Prob(F-statistic)
0.000000
根据表中的样本数据,模型估计结果为
^Y=32390.83+0.603624X1+0.234265X2+0.044632X3-1.914034X4
(39569.49)(0.366112)(0.041218)(0.060755)(2.098257) t = (0.818581) (1.648741) (5.683583) (0.734620) (-0.912202)
R=0.879720 R2=0.861215 F=47.54049 DW=2.007191
可以看出,可决系数R=0.879720,修正的可决系数R2=0.861215。说明模型的拟合程度还可以。但是当α=0.05时,X1、 X2、X4系数均不能通过检验,且X4的系数为负,与经济意义不符,表明模型很可能存在严重的多重共线性。 四、模型修正
1.多重共线性的检验与修正 (1)检验
选中X1 X2 X3 X4数据,点击右键,选择“Open/as Group”,在出现的对话框中选择“View/Covariance Analysis/correlation”,点击ok,得到相关系数矩阵。
计算各个解释变量的相关系数,得到相关系数矩阵。
表4.1 相关系数矩阵 变量 X1
X2 X3 X4 X1 1.000000 0.809777 0.872093 0.659239 X2 0.809777 1.000000 0.758322 0.641086 X3 0.872093 0.758322 1.000000 0.716374 X4 0.659239 0.641086 0.716374 1.000000 2
??2
??由相关系数矩阵可以看出,解释变量X2、X3之间存在较高的相关系数,证实确实存在严重的多重共线性。 (2)多重共线性修正
采用逐步回归的办法,检验和回归多重共线性问题。分别作Y对X1、X2、X3、X4的一元回归,在命令窗口分别输入LS Y C X1,LS Y C X2,LS Y C X3,LS Y C X4,并保存,整理结果如表4.2所示。
表4.2 一元回归结果 变量 参数估计值 t统计量 R2
X1 1.978224 8.635111 0.719983 0.710327
?2X2 0.315120 12.47495 0.842924 0.837508
X3 0.316946 6.922479 0.622988 0.609988
X4 12.54525 4.005547 0.356191 0.333991
R
?2其中,X2的方程R最大,以X2为基础,顺次加入其它变量逐步回归。在命令窗口中依次输入:LS Y C X2 X1,LS Y C X2 X3, LS Y C X2 X4,并保存结果,整理结果如表4.3所示。
表4.3 加入新变量的回归结果(一) 变量 变量 X2,X1 X1 0.711446 X2 0.230304 (5.891959) 0.258113 (7.016265) 0.312045 (9.319239) ?2X3 X4 R 0.866053 ?2(2.679575) 0.087950 (2.043471) X2,X3 0.293708(0.143226) 0.853546 X2,X4 0.831828 经比较,新加入X1的方程R=0.866053,改进最大,而且各个参数的t检验显著,选择保留X1,再加入其它新变量逐步回归,在命令框中依次输入:LS Y C X2 X1 X3,LS Y C X2 X1 X4,保存结果,整理结果如表4.4所示。
表4.4 加入新变量的回归结果(二) 变量 变量 X2,X1,X3 X1 0.603269 (1.652919) 0.773017 (2.741794) ?2X2 0.227087 (5.630196) 0.237243 (5.833838) X3 0.024860 (0.439370) X4 R 0.862078 ?2 -1.364110 (-0.701920) X2,X1,X4 0.863581 当加入X3或X4时,R均没有所增加,且其参数是t检验不显著。从相关系数可以看出X3、X4与X1、X2之间相关系数较高,这说明X3、X4引起了多重共线性,予以剔除。
当取α=0.05时,tα/2(n-k-1)=2.048,X1、X2的系数t检验均显著,这是最后
消除多重共线性的结果。
修正多重共线性影响后的模型为
Y= 0.711446 X1+0.230304 X2
(0.265507)(0.039088)
t = (2.679575) (5.891959)
R=0.874983 R=0.866053 F=97.98460 DW=1.893654
在确定模型以后,进行参数估计
表4.5 消除多重共线性后的回归结果 Dependent Variable: Y
Method: Least Squares Date: 11/14/13 Time: 21:47 Sample: 1 31 Included observations: 31
Coefficient Std. Error t-Statistic C -4316.824 12795.42 -0.337373 X1 0.711446 0.265507 2.679575 X2 0.230304 0.039088 5.891959
R-squared 0.874983 Mean dependent var Adjusted R-squared 0.866053 S.D. dependent var S.E. of regression 41257.10 Akaike info criterion Sum squared resid 4.77E+10 Schwarz criterion Log likelihood -371.8644 Hannan-Quinn criter. F-statistic 97.98460 Durbin-Watson stat Prob(F-statistic) 0.000000
2
?2^Prob. 0.7384 0.0122 0.0000 114619.2 112728.1 24.18480 24.32357 24.23004 1.893654
五、异方差检验
在实际的经济问题中经常会出现异方差这种现象,因此建立模型时,必须要注意异方差的检验,否则,在实际中会失去意义。 (1) 检验异方差
由表4.5的结果,按路径“View/Residual Tests/Heteroskedasticity Tests”,在出现的对话框中选择Specification:White,点击ok.得到White检验结果如下。
表5.1 White检验结果
Heteroskedasticity Test: White
F-statistic 3.676733 Prob. F(5,25) Obs*R-squared 13.13613 Prob. Chi-Square(5) Scaled explained SS 15.97891 Prob. Chi-Square(5)
Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 11/14/13 Time: 21:48 Sample: 1 31 Included observations: 31
Coefficient Std. Error t-Statistic C -1.10E+09 1.11E+09 -0.992779 X1 -12789.36 30151.30 -0.424173 X1^2 0.420716 0.294332 1.429393 X1*X2 -0.101814 0.083576 -1.218216 X2 14604.52 5047.701 2.893301 X2^2 -0.002489 0.008030 -0.309972
R-squared 0.423746 Mean dependent var Adjusted R-squared 0.308495 S.D. dependent var S.E. of regression 2.24E+09 Akaike info criterion Sum squared resid 1.26E+20 Schwarz criterion Log likelihood -708.1335 Hannan-Quinn criter. F-statistic 3.676733 Durbin-Watson stat Prob(F-statistic) 0.012464
2
0.0125 0.0221 0.0069
Prob.
0.3303 0.6751 0.1653 0.2345 0.0078 0.7592
1.54E+09 2.70E+09 46.07313 46.35068 46.16360 1.542170
2?从上表可以看出,nR=13.13613,由White检验可知,在α=0.05下,查
2?统计量与临界值,因为分布表,得临界值χ0.05 (5)=11.0705,比较计算的2nR2=13.13613>χ0.05 (5)=11.0705,所以拒绝原假设,表明模型存在异方差。
2(2)异方差的修正
①用WLS估计:选择权重w=1/e1^2,其中e1=resid。 在命令窗口中输入 genr e1= resid,点回车键。
在消除多重共线性后的回归结果(表4.5的回归结果)对话框中点击Estimate/Options/Weithted LS/TSLS,并在Weight中输入1/e1^2,点确定,得到如下回归结果。
相关推荐: