图5.45 表面处理后碳纤维的拉曼光谱及其分峰处理
XRD是研究碳纤维聚集态结构最常用的方法。将碳纤维磨成粉末进行XRD扫描可在一定程度表征由于纤维表层石墨晶体结构变化引起的整体晶体结构的变化,但这样无疑降低了测试的灵敏度。利用XRD表征碳纤维表面处理效果需要采用其纤维附件对纤维整体进行XRD测试,通过比较处理前后的纤维晶体结构变化来间接衡量处理效果。 5.3.2.4 表面能分析
碳纤维表面处理后,表面能增加,能显著改善碳纤维与水、有机溶剂以及基体树脂之间的润湿性,使接触角减少。表面能的测定通常通过测定接触角,再根据极化方程来计算。这种方法所用仪器简单、操作简便,是测定碳纤维表面处理后润湿性变化的一种有效方法。表5.16为表面处理前后碳纤维浸润性和接触角的变化。图5.46为不同表面处理后碳纤维的接触角变化,对于未处理的碳纤维和石墨纤维,测得的接触角分别为104和115o。随表面处理时间延长,润湿性提高,接触角减少。
表5.16碳纤维表面浸润性变化
浸润增量/mg 接触角θ/o
未处理 87.3 71.5
等离子体 119.3 62.2
阳极氧化 122.2 58.4
图5.46 不同表面处理后碳纤维表面接触角的变化
5.3.2.5 与树脂结合性能分析
碳纤维表面处理效果最直接有效的表征方法是层间剪切强度(ILSS)或者界面剪切强度(IFSS)的测试。碳纤维的层间剪切强度测试方法按国标GB3357-82进行,测试样品纤维体积含量60%左右,尺寸为长*宽*厚=10mm*5mm*2mm,测试跨距5mm,加载速度10mm/min,每个样品测试10次,取平均值。ILSS计算公式为:
ILSS?3P 4bd其中P为断裂负荷,b为样品宽度,d为样品厚度。
IFSS数值与所用树脂体系、纤维体积含量、单向板纤维排布、空隙率等密切相关。采用环氧6101树脂体系,通常碳纤维的ILSS应达到90MPa以上,而采用环氧AG80体系,ILSS则应在120MPa以上。该方法是对碳纤维处理效果最直接有效的评价,但对样品制备要求较高,需要碳纤维样品量较多。
界面剪切强度IFSS是另外一种能够直观表征碳纤维表面处理效果的参数。一般以纤维单丝形式进行测试,并利用数学模型计算得到纤维和树脂之间的IFSS。测试方法有单丝断裂法、单丝拔出法、微脱粘法、单丝顶出法等,这些方法的优点是所需样品量少,但测试得到的IFSS值受样品制备、数据解析等的影响较大,不同方法得到的数值差异较大。
单丝断裂法是将一根纤维埋入树脂中制成拉伸试样,通过对试样进行拉伸,纤维在试样中发生碎裂,利用纤维强度和碎裂长度计算IFSS。该方法是基于单纤维复合材料在延伸过程中,当复合材料延伸率达到纤维断裂延伸率时,纤维发生断裂。当纤维-基体界面发生破坏,拉伸应力将不能传导到纤维上,纤维断裂终止,断裂长度达到饱和时纤维长度为临界长度。界面剪切强度由纤维临界长度、纤维直径和纤维的拉伸强度计算得到。
单丝拔出法是将纤维单丝一端埋入树脂中,利用单丝拉伸设备将纤维从树脂中拔出,通过拔出应力以及纤维直径、埋入深度计算IFSS。单丝拔出法的样品制备极为关键,过长的包埋深度常导致纤维在受拉过程中本身断裂而不是纤维从基体中拔出, 所以埋置深度一定要小于rσ/(2τ) , 其中σ为纤维抗拉强度, r为纤维半径,τ为界面剪切强度,而太短又影响测试的准确性。
微脱粘法是将树脂滴在碳纤维单丝上形成树脂微球,利用钳口卡住树脂微球而对纤维进行拉伸处理,使纤维从微球中脱粘拔出。在脱黏过程中沿碳纤维/树脂基体形成的界面方向上产生剪切应力,界面剪切强度计算公式为τ=F/πDf Le。式中τ为复合材料界面剪切强度,F
为小球发生脱黏时最大载荷,Df为碳纤维直径,Le为埋入长度。埋入长度过长,纤维/树脂间剪切强度超过了碳纤维单丝强度,此时碳纤维发生断裂取代微球脱黏成为主要的破坏方式;而埋入长度过低,树脂基体在碳纤维表面铺展时形成的微球直径小,上下剥离刀片形成的钳口难以夹持,测试时易滑脱。因此,使用微脱黏法测界面剪切强度时,选取测试微球的直径宜控制在40~80 μm。利用微脱黏法测得复合材料的界面剪切强度数值具有较大的分散性,这与纤维表面形成树脂微球的半月板区域、脱黏过程中上下刀片形成的钳口及碳纤维表面形态结构等因素有关。
单丝顶出法使用坚硬的金刚石压头将碳纤维从树脂中压出,界面剪切强度计算公式为τ= F/ ( 2πRL ),其中τ为复合材料界面剪切强度,F为顶出载荷,R为碳纤维半径,L为顶出距离。在顶出过程中考虑的因素较多(如残余应力、摩擦因子等),存在主要问题是顶出过程中在垂直于滑移方向产生的侧向力数值难以估计。
5.3.3 表面处理对碳纤维性能的影响
碳纤维经过表面处理后最直接的影响是提高了纤维与树脂间的界面结合性能,能够使得复合材料的剪切强度有明显提高。通常碳纤维经过表面处理后,由于物理化学的刻蚀等原因,碳纤维强度会有所降低,特别是在处理程度较高时,纤维强度下降明显。也有报道经过合适表面处理后,由于表面刻蚀使得纤维表面缺陷尺寸减少,碳纤维强度可以有一定提高。碳纤维的表面处理通常对模量基本没有影响。
对与阳极氧化表面处理,由于碳纤维在阳极氧化过程中作为阳极,通电时纤维表面均匀放出氧气,随电流密度增加,相应的氧气放出量增加使碳纤维上的薄弱点受到刻蚀,纤维强度出现降低。表5.17为碳纤维经过阳极氧化后单丝强度及质量变化。电流密度小于5mA/cm2时,纤维强度基本不变,电流密度继续增加,纤维强度有一定下降。碳纤维经过表面处理后,纤维质量出现损耗,随着电流密度的提高,质量损失增大。
表5.17 碳纤维经过阳极氧化后的单丝强度及质量变化
电流密度/mA/cm2
0
1.5 2.5 3.5 5 6.5 7.5 10
拉伸强度/GPa
3.68 3.62 3.58 3.52 3.47 3.30 3.22 3.17
CV/% 11.43 14.73 15.57 12.39 11.78 16.23 13.46 17.32
质量损失/% 0 0.014 0.022 0.037 0.045 0.059 0.087 0.121
利用等离子体进行表面处理使得碳纤维强度提高有较多报道。表5.18为几种不同碳纤
维经过等离子体表面处理后碳纤维性能的变化。等离子体表面处理后碳纤维强度提高可能是由于纤维表面细晶化作用及表面缺陷细化的结果。
表5.18 几种不同碳纤维经过等离子体表面处理后碳纤维拉伸性能
样品
Hercules Untreated
Hercules allylcyanide 100W,5min Hercules allylcyanide 200W,5min Hercules allylcyanide 300W,5min Grafil untreated
Grafil allylcyanide 100W,5min Grafil allylcyanide 200W,5min Grafil allylcyanide 300W,5min
Grafil xylene/air/argon 200W,20min
拉伸强度/MPa
3080 3460 3430 3780 3340 3820 3950 3650 3350
断裂伸长/%
1.55 1.77 1.73 1.88 1.63 1.90 1.96 1.84 1.88
碳纤维经过表面处理后其电性能也会所变化。由于经过表面处理后,纤维中有一部分碳元素被氧化成羟基、羧基和羰基。氧原子上带有部分负电荷,而碳原子上带有部分正电荷。带有正电荷的碳原子能俘获电子,对电子的迁移有阻碍作用,从而降低碳纤维的导电性。
相关推荐: