(8) 最大峰值电流( SURGE CURRENT (8/20μs) )
一次以8/20μs标准波形的电流作一次冲击的最大电流值,此时压敏电压变化率仍在±10%以内。2次以8/20μs标准波形的电流作两次冲击的最大电流值,两次冲击时间间隔为5分钟,此时压敏电压变化率仍在±10%以内。 (9) 残压比
流过压敏电阻器的电流为某一值时,在它两端所产生的电压称为这一电流值的残压。残压比则为残压与标称电压之比。 (10)漏电流
漏电流又称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器的电流。
(11) 电压温度系数
电压温度系数是指在规定的温度范围(温度为20~70℃)内,压敏电阻器标称电压的变化率,即在通过压敏电阻器的电流保持恒定时,温度改变1℃时压敏电阻两端的相对变化。 (12) 电流温度系数
电流温度系数是指在压敏电阻器的两端电压保持恒定时,温度改变1℃时,流过压敏电阻器电流的相对变化。 (13) 电压非线性系数
电压非线性系数是指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。
(14) 绝缘电阻
绝缘电阻是指压敏电阻器的引出线(引脚)与电阻体绝缘表面之间的电阻值。 (15) 静态电容
静态电容是指压敏电阻器本身固有的电容容量。 压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。
2 片式压敏电阻的应用行业
压敏电阻主要是用来保护那些易受静电和高压等破坏环境的一种电阻,在一些集成化较高,应用功能复杂的环境中应用较多,其中片式压敏电阻体积小,适应于高度集成化的电子环境。据了解,手持式电子产品的广泛应用,使得手机、手提电脑、PDA、数码相机和医疗仪器等产品对电路系统的速度和工作电压提出更为严格的要求。片式压敏电阻虽因其响应速度快、无极性、成本低以及和SMT工艺兼容等优点而被推到了市场前沿。
在手机中的应用中,由于增加了多种新功能,如彩屏、可拍照、MMS,手机中的IC集成度也越来越高,与此同时,半导体器件和IC的工作电压越来越低,当芯片变得越来越薄时,遭受过电压和静电放电(ESD)危害的几率大大增加了。由于过电压和静电放电对集成电路和半导体器件会造成损坏,因而需要大量的过电压保护元件来对昂贵的半导体器件提供保护。 片式压敏电阻行情看好,但同时却面临了一个尴尬,片式压敏电阻由于价格坚挺,一般而言,同种类型的片式压敏电阻要比DIP型的价格高出3-5倍。以致扩大市场份额的过程中和贴片LED同显步履蹒跚。元件市场片式压敏电阻的实际情形是,供应市场不大,需求市场也不大。目前压敏电阻市场DIP直插产品是主流,SMT产品则是发展趋势。片式压敏电阻虽有更大的发展空间,但尚未找到合适的契机。目前,正规渠道的片式压敏电阻不少是来自台湾生产的,但现货市场却流通着不少非台湾产的不知名水货产品。由于水货的价格和正品相比有一倍之差,也有客户乐意买水货产品。
压敏电阻的工作原理
压敏电阻器(VSR)是电压灵敏电阻器的简称,它是一种新型过压保护元件。压敏电阻器是以氧化锌为主要材料而制成的金属-氧化物-半导体陶瓷元件,构成压敏电阻的核心材料为氧化锌,氧化锌又包括氧化锌晶粒和晶粒周围的晶界层,氧化锌晶粒的电阻率很低,而晶界层电阻率很高,相接触的两个晶粒之间形成一个相当于齐纳二极管的势垒,成为一个压敏电阻单元,单元通过串联,并联组成压敏电阻器基体。压敏电阻器在工作时,每个压敏电阻单元都承担浪涌能量,而这些压敏电阻单元是大体上均匀分布在整个电阻体内的,也就是整个电阻体都承担能量,而不像齐纳二极稳压管那样只是结区承担电功率,这就是陶瓷压敏电阻器具有比齐纳二极稳压管大得很多的通流和能量定额的原因。其电阻值随端电压而变化。压敏电阻器的主要特点是工作电压范围宽(6—3000伏,分若干档),对过压脉冲响应快(几至几十纳秒),耐冲击电流的能力强(可达100安培-20千安培),漏电流小(低于几至几十微安),电阻温度系数小,性优价廉,体积小,是一种理想的保护元件。由它可构成过压保护电路,消噪电路,消火花电路,吸收回路。压敏电阻的电路符号,外形和内部结构见图1。
压敏电阻的结构就象两个特性一致的背靠背联接的稳压管,其性质基本相同。压敏电阻的主要特性是,当两端所加电压在标称额定值以内时,它的电阻值几乎为无穷大,处于高阻状况,其漏电流<50微安,当它两端的电压稍微超过额定电压时,其电阻值急剧下降,立即处于导通状况,工作电流增加几个数量级,反应时间仅在毫微秒级。压敏电阻在国外俗称“斩波器”和”限幅器”,这是从它的实际作用而得名的。
图2给出了压敏电阻在电路中的工作波形。其中(a)表示,在供电网络叠加有过电压脉冲时,接有压敏电阻后,过电压峰值波形被削平,限制在一定的幅度内,(b)则表示,在开启或关闭带有感性,容性的负载电路时,直流波形出现开关尖脉冲,压敏电阻在电路中能吸收这种反电动势,从而有效地保护开关电路不受损害。在汽车电器上用得最多的还是汽车电脑板中的电源保护电路,丰田车系的电脑板中用的压敏电阻为黑色圆片状,而美国车系和大宇车系的电脑板中压敏电阻多数为红色,如果车上的发电机电压调节器失灵,造成长时间电压过高或电瓶线与电瓶桩松动,脱开以及使用大功率的启动电源启动发动机,经常会使电脑
板中的压敏电阻损坏。
压敏电阻标称参数
电子信息 2008-10-20 12:45:07 阅读2034 评论0 字号:大中小 订阅 压敏电阻标称参数
压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用 于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻 虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到 这一点。压敏电阻的选用,一般考虑标称压敏电压V1mA和通流容量两个参数。
1、所谓压敏电压,即击穿电压或阈值电压。指在规定电流下的电压值,大多数情况下用1mA直流 电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等。可根据具体 需要正确选用。一般V1mA=1.5Vp=2.2VAC,式中,Vp为电路额定电压的峰值。VAC为额定交流电压的 有效值。ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。如一台用电器 的额定电源电压为220V,则压敏电阻电压值V1mA=1.5Vp=1.5××220V=476V,V1mA=2.2VAC=2.2× 220V=484V,因此压敏电阻的击穿电压可选在470-480V之间。
2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形 和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。为了延长器件的 使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。然而从保护 效果出发,要求所选用的通流量大一些好。在许多情况下,实际发生的通流量是很难精确计算的, 则选用2-20KA的产品。如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联 使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。要求并联的压敏电阻伏安特性 尽量相同,否则易引起分流不均匀而损坏压敏电阻。 压敏电阻的选用
选用压敏电阻器前,应先了解以下相关技术参数:标称电压是指在规定的温度和直流电流下,压敏 电阻器两端的电压值。漏电流是指在25℃条件下,当施加最大连续直流电压时,压敏电阻器中流过 的电流值。等级电压是指压敏电阻中通过8/20等级电流脉冲时在其两端呈现的电压峰值。通流量 是表示施加规定的脉冲电流(8/20μs)波形时的峰值电流。浪涌环境参数包括最大浪涌电流Ipm (或最大浪涌电压Vpm和浪涌源阻抗Zo)、浪涌脉冲宽度Tt、相邻两次浪涌的最小时间间隔Tm以及 在压敏电阻器的预定工作寿命期内,浪涌脉冲的总次数N等。 3.1 标称电压选取
一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流 或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应高于额定值中选择的最大连续工 作电压,该最大连续工作电压值所对应的标称电压值即为选用值。对于过压保护方面的应用,压敏 电压值应大于实际电路的电压值,一般应使用下式进行选择: VmA=av/bc
式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b为压敏电
压误差,一般取0.85;c为元件的老化系数,一般取0.9;
这样计算得到的VmA实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此计算结 果应扩大1.414倍。另外,选用时还必须注意:
(1) 必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使 用寿命;
(2) 在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采 用比线与线间使用场合更高标称电压的压敏电阻器。 压敏电阻所吸收的浪涌电流应小于产品的最大通流量。 应 用
电路浪涌和瞬变防护时的电路。对于压敏电阻的应用连接,大致可分为四种类型:
第一种类型是电源线之间或电源线和大地之间的连接,作为压敏电阻器,最具有代表性的使用场合 是在电源线及长距离传输的信号线遇到雷击而使导线存在浪涌脉冲等情况下对电子产品起保护作用 。一般在线间接入压敏电阻器可对线间的感应脉冲有效,而在线与地间接入压敏电阻则对传输线和 大地间的感应脉冲有效。若进一步将线间连接与线地连接两种形式组合起来,则可对浪涌脉冲有更 好的吸收作用。
第二种类型为负荷中的连接,它主要用于对感性负载突然开闭引起的感应脉冲进行吸收,以防止元 件受到破坏。一般来说,只要并联在感性负载上就可以了,但根据电流种类和能量大小的不同,可 以考虑与R-C串联吸收电路合用。
第三种类型是接点间的连接,这种连接主要是为了防止感应电荷开关接点被电弧烧坏的情况发生, 一般与接点并联接入压敏电阻器即可。
第四种类型主要用于半导体器件的保护连接,这种连接方式主要用于可控硅、大功率三极管等 半导体器件,一般采用与保护器件并联的方式,以限制电压低于被保护器件的耐压等级,这对半导 体器件是一种有效的保护。 4 氧化锌压敏电阻存在的问题
现有压敏电阻在配方和性能上分为相互不能替代的两大类: 4.1 高压型压敏电阻
高压型压敏电阻,其优点是电压梯度高(100~250V/mm)、大电流特性好(V10kA/V1mA≤1.4)但 仅对窄脉宽(2≤ms)的过压和浪涌有理想的防护能力,能量密度较小,(50~300)J/cm3。 4.2 高能型压敏电阻
高能型压敏电阻,其优点是能量密度较大(300J/cm3~750J/cm3),承受长脉宽浪涌能力强,但电 压梯度较低(20V/mm~500V/mm),大电流特性差(V10kA/V1mA>2.0)。
这两种配方的性能差别造成了许多应用上的“死区”,在10kV电压等级的输配电系统中广泛采 用了真空开关,由于它动作速度快、拉弧小,会在操作瞬间造成极高过压和浪涌能量,如果选用高 压型压敏电阻加以保护(如避雷器),虽然它电压梯度高、成本较低,但能量容量小,容易损坏; 如果选用高能型压敏电阻,虽然它能量容量大,寿命较长,但电压梯度低,成本太高,是前者的5
相关推荐: