做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元 观察物体
1、从不同的角度观察物体,看到的形状可能是不同的,也可能是相同的。2、观察长方体或正方体时,从固定位置一次最多能看到三个面。
第四单元 简易方程
1、在含有字母的式子里,数字和字母中间的乘号,字母和字母之间的乘号,可以记作“·”,也可以省略不写。 加号、减号,除号以及数与数之间的乘号不能省略。 2、a×a可以写作a·a或a ,a 读作a的平方。 2a表示a+a
3、方程:含有未知数的等式称为方程。 方程一定是等式,但等式不一定是方程。
使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。(解方程要先写“解”) 方程的解是一个数; 解方程是一个计算过程。
17
4、解方程的原理: (1)等式的基本性质
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 (2)10个数量关系式:
加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
5、方程的检验过程:
检验:方程左边 =…… =方程右边 所以, x=…是方程的解。 6、列方程解应用题的步骤:
(1)弄清题意,找出未知数,用x表示。
(2)分析、找出数量之间的等量关系,列出方程; (3)解方程。 (4)检验,写出答案。
18
7、和倍或差倍应用题的解答方法:
设一倍的量为x,另一个量根据倍数关系表示为几x。再根据两个量的和或差列出方程。
第五单元 多边形的面积 1、 公式:
长方形:周长=(长+宽)×2 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab 正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形的面积=底×高 字母公式: S=ah 底=面积÷高 高=面积÷底
三角形的面积=底×高÷2 字母公式: S=ah÷2 (底=面积×2÷高;高=面积×2÷底)
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
上底=面积×2÷高-下底 下底=面积×2÷高-上底 高=面积×2÷(上底+下底)
2、单位换算的方法:大化小,乘进率;小化大,除以进率。
3、常用的单位间的进率
19
长度单位:
1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 面积单位:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
4、图形之间的关系:
两个完全相同的三角形可以拼成一个平行四边形。 两个完全相同的梯形可以拼成一个平行四边形。 等底等高的平行四边形面积相等;等底等高的三角形面积相等。
等底等高的平行四边形面积是三角形面积的2倍。 如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。
如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。
5、把长方形框架拉成平行四边形,周长不变,面积变小了。
6、求组合图形面积的方法:
(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。
20
相关推荐: