数列专题讲义
知识点:通项公式,等差,等比求和公式
解题方法:累加法,累乘法,错位相减法,构造法等
一.选择题:
1.一个等差数列的第6项等于13,前5项之和等于20,那么 ( ) (A)它的首项是-2,公差是3 (B)它的首项是2,公差是-3 (C)它的首项是-3,公差是2 (D)它的首项是3,公差是-2
2.在等差数列{an}中,已知前15项之和S15=60,那么a8= ( ) (A)3 (B)4 (C)5 (D)6
3.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于 ( ) (A)50 (B)100 (C0150 (D)200 4.设{an}是公差为d=-
12的等差数列,如果a1+a4+a7…+a58=50,那么a3+a6+a9+…+a60=( (A)30 (B)40 (C)60 (D)70
5.等差数列{an}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为 ( ) (A)21 (B)24 (C)27 (D)30
6.一个数列的前n项之和为Sn=3n2+2n,那么它的第n(n≥2)项为 ( )
(A)3n2 (B)3n2
+3n (C)6n+1 (D)6n-1
7.首项是
125,第10项为开始比1大的项,则此等差数列的公差d的范围是( )(A)d>875 (B)d<325(C)875<d<38325 (D)75<d≤25
8. 设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,
则下列结论错误..
的是( ) A. d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最大值
9.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,
则这个数列有( ) 、 A.13项 B.12项 C.11项 D.10项
10.设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( A.1 B.2 C.4 D.6 11.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )
A. a1+a101>0 B. a2+a100<0 C. a3+a99=0 D.a51=51 12.在等比数列{an} 中,a9?a10?a,(a?0)a19?a20?b,则a99?a100? (A.b9a B.b9b10b108a9 C.a9 D. (a)
13.若lg2、lg(2x-1)、lg(2x+3)成等差数列,则x的值等于( )
A. 0 B. log25 C. 32 D. 0或32 14.若数列{an},已知a1=2,an+1=an+2n(n≥1),则a100的值为( )
A. 9900 B. 9902 C. 9904 D. 10100
) )
)
二.填空题:
13.设数列{an}的通项为an=2n-7(n∈N*),则|a1|+|a2|+…+|a15|= .
14.等差数列{an}中,a3+a7+2a15=40,则S19=___________.
15.在等比数列{an}中,a3a4a5?3,a6a7a8?24,a9a10a11?( )
A.48 B.72 C. 144 D. 192
16.已知等差数列{an}的公差是正数,则a2·a6=-12,a3+a5=-4,则前20项的和S20的值是_____. 17.在等比数列{an}中,若a1,a10是方程2x?4x?1?0的两根,
则a4?a7的值为_________
2?4 成等差数列,?1,b1,b2,b3,?4成等比数列, 18.已知数列?1,a1,a2,则
a2?a1的值___________ b219.有两个等差数列{an}、{bn},若
a1?a2?????an3n?1a?,则13=
b1?b2?????bn2n?3b1320.等差数列{an}有2n+1项,其中奇数项的和是24,偶数项的和是18,
21.已知数列{an}的前n项和为Sn,并且log2(Sn+3)=n,那么数列{an}的通项公式是
22.在等比数列{an}中,a7?a11?6,a4?a14?5, 则
那么这个数列的项数是_____________
a20?__________ a1023.a,b,c成等比数列,且a?x,b?2x,c?3x成等差数列,则b:a?_________
24已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于____________
三、解答题 25.已知数列{
1n?n?1}的前n项和Sn?9,求n的值
26.求数列
1111,,............前n项的和 1?22?33?4n(n?1).27.求和: S?1?2x?3x?....?.nx2n?1
28.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是37,第二个数与第三个数的和是36,求这四个数。
29.已知函数
f(x)?1, 且对任意自然数
n,都有
f(n)?f(0)?f(1)?f(2)?.?.f.(n?1)?1
求 f(0)?f(1)?f(2)?...f(n)的表达式
30.设Sn是数列{an}的前n项和:Sn?1?4an?2a1?1 (1) 设bn?an?1?2an 求证:{bn}是等比数列 (2) 设Cn?2222an,求证:{Cn}是等差数列 n2(3) 求数列{an}的通项公式及前n项和公式
相关推荐: