第二类为酞菁和菁类系列染料。酞菁分子中引入磺酸基、羧酸基等能与TiO2表面结合的基团后,可用做敏化染料。分子中的金属原子可为Zn、Cu、Fe、Ti和Co等金属原子。它的化学性质稳定,对太阳光有很高的吸收效率,自身也表现出很好的半导体性质。而且通过改变不同的金属可获得不同能级的染料分子,这些都有利于光电转化。
第三类为天然染料。自然界经过长期的进化,演化出了许多性能优异的染料,广泛分布于各种植物中,提取方法简单。因此近几年来,很多研究者都在探索从天然染料或色素中筛选出适合于光电转化的染料。植物的叶子具有光化学能转化的功能,因此,从绿叶中提取的叶绿素应有一定的光敏活性。从植物的花中提取的花青素也有较好的光电性能,有望成为高效的敏化染料。天然染料突出的特点是成本低,所需的设备简单。
第四类为固体染料。利用窄禁带半导体对可见光良好的吸收,可在TiO2纳米多孔膜表面镀一层窄禁带半导体膜。例如InAs和PbS,利用其半导体性质和TiO2纳米多孔膜的电荷传输性能,组成多结太阳能电池。窄禁带半导体充当敏化染料的作用,再利用固体电解质组成全固态电池。但窄禁带半导体严重的光腐蚀阻碍了进一步应用。 电解质
电解质在电池中主要起传输电子和空穴的作用。目前DSSC电解质通常为液体电解质,主要由I-/I3-、(SCN)2-/SCN-、
word文档 可自由复制编辑
[Fe(CN)6]3-/[Fe(CN)6]4-等氧化还原电对构成。但液态电解质也存在一些缺点:(l)液态电解质的存在易导致吸附在TiO2薄膜表面的染料解析,影响电池的稳定性。(2)溶剂会挥发,可能与敏化染料作用导致染料发生光降解。(3) 密封工艺复杂,密封剂也可能与电解质反应,因此所制得的太阳能电池不能存放很久。要使DSSC走向实用,须首先解决电解质问题,固体电解质是解决上述问题的有效途径之一。 光阴极
电池的阴极一般由镀了Pt的导电玻璃构成。导电玻璃一般用在DSSC上的有两种,它们分别是ITO(掺
In的SnO2膜)和FTO(掺F的SnO2膜)。导电玻璃的透光率要求在85%以上,其方块电阻为10- 20Ω/cm2,导电玻璃起着电子的传输和收集的作用。I3-在光阴极上得到电子再生成I-离子,该反应越快越好,但由于I3-在光阴极上还原的过电压较大,反应较慢。为了解决这个问题,可以在导电玻璃上镀上一层Pt,降低了电池中的暗反应速率,这可提高太阳光的吸收率。 二、染料敏化太阳能电池性能指标
DSSC的性能测试目前通用的是使用辐射强度为1000 W/m2的模拟太阳光,即AM1.5太阳光标准。评价的主要指标包括:开路电压(Voc)、短路电流密度(Isc)、染料敏化太阳电池的I-V特性、填充因子(FF)、单色光光电转换效率(IPCE)和总光电转换效率(?global)。 开路电压指电路处于开路时DSSC的输出电压,表示太阳能电池的电压输出能力。短路电流指太阳能电池处于短接状态下流经电
word文档 可自由复制编辑
池的电流大小,表征太阳能电池所能提供的最大电流。Voc和Isc是DSSC的重要性能参数,要提高DSSC的光电性能,就要有高的Voc和Isc。
判断染料敏化太阳能电池输出特性的主要方法是测定其光电流和光电压曲线即I-V特性曲线。填充因子是指太阳能电池在最大输出功率(Pmax)时的电流(Im)和电压(Vm)的乘积与短路电流和开路电压乘积的比值,是表征因由电池内部阻抗而导致的能量损失。 DSSC的光电转换效率是指在外部回路上得到最大输出功率时的光电转换效率。对于光电转换器件经常用单色光光电转换效率IPCE来衡量其量子效率,IPCE定义为单位时间内外电路中产生的电子数Ne与单位时间内入射单色光电子数NP之比。由于太阳光不是单色光,包括了整个波长,因此对于DSSC常用总光电转换效率来表示其光电性能。?global定义为电池的最大输出功率与入射光强的比。 【仪器与试剂】 一、仪器设备
XRD粉末衍射仪、可控强度调光仪、紫外-可见分光光度计、电化学工作站、超声波清洗器、恒温水浴槽、多功能万用表、电动搅拌器、马弗炉、红外线灯、研钵、三室电解池、铂片电极、饱和甘汞电极、石英比色皿、导电玻璃、镀铂导电玻璃、锡纸、生料带、三口烧瓶(500mL)、分液漏斗、布氏漏斗、抽虑瓶、容量瓶、烧杯、镊子等。
word文档 可自由复制编辑
二、试剂材料
钛酸四丁酯、异丙醇、硝酸、无水乙醇、乙二醇、乙腈、碘、碘化钾、TBP、丙酮、石油醚、绿色叶片、红色花瓣、去离子水 【实验步骤】 一、TiO2溶胶制备
目前合成纳米TiO2的方法有多种,如溶胶-凝胶法、水热法、沉淀法、电化学沉积法等。本实验采用溶胶-凝胶法。
(1)在500mL的三口烧瓶中加入1:100(体积比)的硝酸溶液约100mL,将三口烧瓶置于60-70oC的恒温水浴中恒温。 (2)在无水环境中,将5mL钛酸丁酯加入含有2mL异丙醇的分液漏斗中,将混合液充分震荡后缓慢滴入(约1滴/秒)上述三口烧瓶中的硝酸溶液中,并不断搅拌,直至获得透明的TiO2溶胶。 二、TiO2电极制备
取4片ITO导电玻璃经无水乙醇、去离子水冲洗、干燥,分别将其插入溶胶中浸泡提拉数次,直至形成均匀液膜。取出平置、自然晾干,再红外灯下烘干。最后在450oC下于马弗炉中煅烧30min得到锐态矿型TiO2修饰电极。可用XRD粉末衍射仪测定TiO2晶型结构。
三、 染料敏化剂的制备和表征 (1) 叶绿素的提取
采集新鲜绿色幼叶,洗净晾干,去主脉,称取5g剪碎放入研钵,加入少量石油醚充分研磨,然后转
word文档 可自由复制编辑
入烧杯,再加入约20mL石油醚,超声提取15min后过滤,弃去滤液。将滤渣自然风干后转入研钵中,再以同样的方法用20mL丙酮提取,过滤后收集滤液,即得到取出了叶黄素的叶绿素丙酮溶液,作为敏化染料待用。 (2) 花色素的提取
称取5g红花或黄花的花瓣,洗净晾干,放入研钵捣碎,加入95%乙醇溶液淹没浸泡5min后转入烧杯,继续加入约20mL乙醇,超声波提取20min后过滤,得到花红素的乙醇溶液,作为敏化染料待用。
(3) 染料敏化剂的UV-Vis吸收光谱测定
以有机溶剂(丙酮或乙醇)做空白,测定叶绿素和花红素的紫外-可见光吸收光谱。由此确定染料敏化剂的电子吸收波长范围。 四、染料敏化电极制备和循环伏安曲线测定 (1)敏化电极制备
经过煅烧后的4片TiO2电极冷却到80 oC左右,分别浸入上述两类染料溶液中,浸泡2~3 h后取出,清洗、晾干,即获得经过染料敏化的4个TiO2电极。然后采用铜薄膜在未覆盖TiO2膜的导电玻璃上引出导电极,并用生料带外封。 (2)电极循环伏安曲线测定
为考察不同的染料敏化剂在纳米TiO2电极上的电化学行为和可逆性,分别以染料敏化后的TiO2电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,pH=6.86的磷酸盐缓冲液为支持电
word文档 可自由复制编辑
相关推荐: