第一范文网 - 专业文章范例文档资料分享平台

2014年高考数学(理)真题分类汇编:解析几何word

来源:用户分享 时间:2025/8/9 12:11:27 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

数 学

H单元 解析几何

H1 直线的倾斜角与斜率、直线的方程 14.、[2014·湖北卷] 设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)

a+b

的平均数,记为Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=,即Mf(a,b)

2

为a,b的算术平均数.

(1)当f(x)=________(x>0)时,Mf(a,b)为a,b的几何平均数;

2ab

(2)当f(x)=________(x>0)时,Mf(a,b)为a,b的调和平均数.

a+b

(以上两空各只需写出一个符合要求的函数即可)

14.(1)x (2)x(或填(1)k1x;(2)k2x,其中k1,k2为正常数)

x22

20.[2014·江西卷] 如图1-7所示,已知双曲线C:2-y=1(a>0)的右焦点为F,点A,

aB分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).

图1-7

(1)求双曲线C的方程;

x0x

(2)过C上一点P(x0,y0)(y0≠0)的直线l:2-y0y=1与直线AF相交于点M,与直线x

a3|MF|=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值. 2|NF|

20.解:(1)设F(c,0),因为b=1,所以c=a2+1.

cc11

,-?. 由题意,直线OB的方程为y=-x,直线BF的方程为y=(x-c),所以B?2a??2aa1

又直线OA的方程为y=x,

ac?c?-?-2a?ac3

c,?,所以kAB=则A?=. ?a?ca

c-2

3?1?x222

又因为AB⊥OB,所以2?-a?=-1,解得a=3,故双曲线C的方程为-y=1.

a3x0x-3x0x

(2)由(1)知a=3,则直线l的方程为-y0y=1(y0≠0),即y=(y≠0).

33y00

2x0-3?

因为直线AF的方程为x=2,所以直线l与AF的交点为M?2,,直线l与直线

3y0??

3

x-3

3320x=的交点为N,, 223y0

(2x0-3)2

(3y0)2(2x0-3)2|MF|2

则== 22=|NF|2?3x0-3?9y0+9(x0-2)2

?441?2

+4(3y0)2(2x0-3)2422. 33y20+3(x0-2)

x20又P(x0,y0)是C上一点,则-y20=1, 3

2

(2x0-3)2|MF|244(2x0-3)4|MF|223

代入上式得=2=,所以==,2=22|NF|3x0-3+3(x0-2)234x2|NF|330-12x0+93

为定值.

x2y2

20.,,[2014·四川卷] 已知椭圆C:2+2=1(a>b>0)的焦距为4,其短轴的两个端点与

ab长轴的一个端点构成正三角形.

(1)求椭圆C的标准方程.

(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.

①证明:OT平分线段PQ(其中O为坐标原点);

|TF|②当最小时,求点T的坐标.

|PQ|

?a2+b2=2b,

20.解:(1)由已知可得? 22?2c=2a-b=4,

解得a2=6,b2=2,

x2y2

所以椭圆C的标准方程是+=1.

62

(2)①证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m), m-0

则直线TF的斜率kTF==-m.

-3-(-2)

1

当m≠0时,直线PQ的斜率kPQ=.直线PQ的方程是x=my-2.

m当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.

x=my-2,??22

设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得?xy

+=1.??62消去x,得(m2+3)y2-4my-2=0,

其判别式Δ=16m2+8(m2+3)>0. -24m

所以y1+y2=2,y1y2=2,

m+3m+3

-12

x1+x2=m(y1+y2)-4=2.

m+3设M为PQ的中点,则M点的坐标为?m

所以直线OM的斜率kOM=-,

3m

又直线OT的斜率kOT=-,

3所以点M在直线OT上, 因此OT平分线段PQ. ②由①可得,

|TF|=m2+1,

|PQ|=(x1-x2)2+(y1-y2)2 =(m2+1)[(y1+y2)2-4y1y2]

4m?2-2???2

=(m+1)?m2+3-4·2?

?m+3???24(m2+1)

=.

m2+3|TF|所以=

|PQ|

221(m+3)·= 24m2+1

?-6,2m?.

??m2+3m2+3?

41?2

m+1+2+4?≥m+1?24?

13

(4+4)=. 243

4|TF|

当且仅当m2+1=2,即m=±1时,等号成立,此时取得最小值.

|PQ|m+1|TF|

故当最小时,T点的坐标是(-3,1)或(-3,-1).

|PQ|

H2 两直线的位置关系与点到直线的距离 21.、、[2014·全国卷] 已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点5

为P,与C的交点为Q,且|QF|=|PQ|.

4

(1)求C的方程;

(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.

8

21.解:(1)设Q(x0,4),代入y2=2px,得x0=,

p8pp8

所以|PQ|=,|QF|=+x0=+.

p22p

p858

由题设得+=3,解得p=-2(舍去)或p=2,

2p4p

所以C的方程为y2=4x.

(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0). 代入y2=4x,得y2-4my-4=0. 设A(x1,y1),B(x2,y2),

则y1+y2=4m,y1y2=-4.

故线段的AB的中点为D(2m2+1,2m), |AB|=m2+1|y1-y2|=4(m2+1). 又直线l ′的斜率为-m,

1

所以l ′的方程为x=-y+2m2+3.

m将上式代入y2=4x,

4

并整理得y2+y-4(2m2+3)=0.

m设M(x3,y3),N(x4,y4),

4

则y3+y4=-,y3y4=-4(2m2+3).

m22?2

2+2m+3,-故线段MN的中点为E?m?, ?m|MN|=4(m2+1)2m2+111+2|y3-y4|=. mm21

由于线段MN垂直平分线段AB,故A,M,B,N四点在同一圆上等价于|AE|=|BE|=|MN|,

211

从而|AB|2+|DE|2=|MN|2,即

4422

2m+?+?2+2?= 4(m+1)+?m??m??

2

2

2

2

4(m2+1)2(2m2+1)

m4化简得m2-1=0,解得m=1或m=-1,

故所求直线l的方程为x-y-1=0或x+y-1=0.

H3 圆的方程

x2

9.、[2014·福建卷] 设P,Q分别为圆x+(y-6)=2和椭圆+y2=1上的点,则P,

10

2

2

Q两点间的最大距离是( )

A.52 B.46+2 C.7+2 D.62 9.D

H4 直线与圆、圆与圆的位置关系 10.、[2014·安徽卷] 在平面直角坐标系xOy中,已知向量a,b,|a|=|b|=1,a·b=0,→→

点Q满足OQ=2(a+b).曲线C={P|OP=acos θ+bsin θ,0≤θ<2π},区域Ω={P|0<r≤|PQ|≤R,r<R}.若C∩Ω为两段分离的曲线,则( )

A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R 10.A

2014年高考数学(理)真题分类汇编:解析几何word.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c36z944jz691is530735a_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top