=2sinα-1=2×?
2
3?5?2
?-1=-5. ?5?
3
5.若α是三角形的最大内角,且sin α-cos α=,则三角形是( )
5A.钝角三角形 C.直角三角形
B.锐角三角形 D.等腰三角形
39
解析:选B 将sin α-cos α=两边平方,得1-2sin αcos α=,即2sin αcos
52516
α=.又α是三角形的内角,∴sin α>0,cos α>0,∴α为锐角.
25
6.若sin θ=-
2
,tan θ>0,则cos θ=________. 2
解析:由已知得θ是第三象限角, 所以cos θ=-1-sinθ=-答案:-
2 2
21-?-
??22?2
?=-2. 2?
7.化简:1-2sin 40°cos 40°=________. 解析:原式=sin40°+cos40°-2sin 40°cos 40° = °-cos 40°
2
2
2
=|cos 40°-sin 40°|
=cos 40°-sin 40°. 答案:cos 40°-sin 40°
11+2sin αcos α
8.已知tan α=-,则=________. 222sinα-cosα1+2sin αcos α
解析:=22
sinα-cosα
α+cos α22sinα-cosα
2
11-+122sin α+cos αtan α+11
=====-. sin α-cos αtan α-1133
--1-221
答案:-
3
cos 36°-1-cos36°
9.化简:(1);
1-2sin 36°cos 36°sin θ-cos θ(2).
tan θ-1
2
解:(1)原式==
22
sin36°+cos36°-2sin 36°cos 36°-
2
cos 36°-sin36°
2cos 36°-sin 36°
==
cos 36°-sin 36°
|cos 36°-sin 36°|cos 36°-sin 36°
=1.
cos 36°-sin 36°
=cos θ.
sin θ-cos θcos θθ-cos θ
(2)原式==sin θsin θ-cos θ
-1cos θ10.已知sin α+cos α=解:将sin α+cos α=∴tan α+
31,求tan α+及sin α-cos α的值. 3tan α
31两边平方,得sin αcos α=-. 33
11
==-3, tan αsin αcos α
252
(sin α-cos α)=1-2sin αcos α=1+=,
33∴sin α-cos α=±
层级二 应试能力达标
3π?1?1.已知tan α=,且α∈?π,?,则sin α的值是( ) 2?2?A.-5
5
B.5 5
15. 3
25C.
525D.-
5
3π??解析:选A ∵α∈?π,?,∴sin α<0. 2??sin α122
由tan α==,sinα+cosα=1,
cos α2得sin α=-2.化简?
5. 5
?1+1?(1-cos α)的结果是( )
??sin αtan α?
B.cos α D.1+cos α
A.sin α C.1+sin α
解析:选A ?+cos αsin α
?1+1?sin αtan α?(1-cos α)=?1+cos α??sin αsin α??
2
2
?·(1-cos α)=
??
1-cosαsinα
·(1-cos α)===sin α.
sin αsin α
544
3.已知θ是第三象限角,且sinθ+cosθ=,则sin θcos θ的值为( )
9A.2 3
B.-2 3
1C. 31D.- 3
544
解析:选A 由sinθ+cosθ=,得
9522222
(sinθ+cosθ)-2sinθcosθ=.
9222
∴sinθcosθ=.∵θ是第三象限角,
9∴sin θ<0,cos θ<0,∴sin θcos θ=
2. 3
sin θ+cos θ
4.已知=2,则sin θcos θ的值是( )
sin θ-cos θ3A. 43C. 10
解析:选C 由条件得sin θ+cos θ=2sin θ-2cos θ, 即3cos θ=sin θ,tan θ=3,
sin θcos θtan θ33
∴sin θcos θ=2==. 222=sinθ+cosθ1+tanθ1+310
15π
5.已知sin αcos α=,且π<α<,则cos α-sin α=________.
84
5π
解析:因为π<α<,所以cos α<0,sin α<0.利用三角函数线,知cos α 4所以cos α-sin α<0,所以cos α-sin α=-3. 2 3 2 α-sin α 2 3B.± 103D.- 10 =- 11-2× 8 =- 答案:- 6.若sin α+cos α=1,则sinα+cosα(n∈Z)的值为________. 解析:∵sin α+cos α=1, ∴(sin α+cos α)=1,又sinα+cosα=1, ∴sin αcos α=0,∴sin α=0或cos α=0, 当sin α=0时,cos α=1,此时有sinα+cosα=1; 当cos α=0时,sin α=1,也有sinα+cosα=1, ∴sinα+cosα=1. 答案:1 2tanα1?π?7.已知=,α∈?,π?. 1+2tan α3?2? 2 2 2 nnnnnnnn(1)求tan α的值; sin α+2cos α (2)求的值. 5cos α-sin α tanα12 解:(1)由=,得3tanα-2tan α-1=0, 1+2tan α3即(3tan α+1)(tan α-1)=0, 1 解得tan α=-或tan α=1. 3 1?π?因为α∈?,π?,所以tan α<0,所以tan α=-. 3?2? 1 -+231sin α+2cos αtan α+25 (2)由(1),得tan α=-,所以===. 35cos α-sin α5-tan α?1?16 5-?-??3? cos αsin αα-sin α 8.求证:-=. 1+sin α1+cos α1+sin α+cos αcos α 证明:左边=2 22 +cos α-sin α+sin α+sin α+cos α cosα-sinα+cos α-sin α = 1+sin α+cos α+sin αcos α= α-sin α12 α+sin α 2 α+sin α+1 +sin α+cos α+2
相关推荐: