ɱؽо
ժ Ҫ
ũҵķչȻˮȾءΪˮеҪȾ֮һؽԽԽܵǵձעɽԡǨСԼиص㣬ˮֲȽӰཡ
Ҫо˿ɱؽĵӰءCu2+ΪĿȾͨı价¶ȡpHǿȵأȷɱCu2+ͨZetaλⶨǼɱCu2+ıɱ仯̽
о
1pHɱͭӵʻpHֵϵԵǵpHӵһֵʱٶȱ仺
2ǿȣǿȵߣɱͭӵЧԽ͡ 3лʯڿɱͭӵӰЧãDzᡢ飻Cu2+ͶӶӣͶߣԱ仺
4ؽؽӴ»ƿɱCu2+Ч˳Ϊ Cd2+> Hg2+
5ѧ¶ߣԭһȹ̡LangmuirģɱͭӵΪҪFreundlichģ͡
6ѧɱؽٶȺܿ죬2.0hﵽƽ⡣ɱͭӵĶѧԭϼٶζѧģ͡
ؼʣɱͭӣ
I
Abstract
With the development of modern industry and agriculture, the pollution of water environment becomes worse. People pay more attention to heavy metals, which is the one of the main pollutants. With the characteristics of non-degradation, little mobility and easy to enrichment in soil, heavy metals will ultimately affect human health though water, plants and other media.
This paper mainly studies the variable charge soils single-phase adsorption of heavy metals and the affecting factors. Cu2+ as the target pollutant, this experiment changes the environmental factors such as temperature, pH, ionic strength and so on, to determine which is the best condition for the variable charge soils adsorbing Cu2+. Through the Zeta potential analyzer, we monitor the surface charge of variable charge soils to explore the adsorption mechanism.
In this paper,
(1) pH: the adsorption rate of variable charge soils adsorbing Cu2+ is essentially proportional to the pH value, but when the pH increases to a certain value, the adsorption rate of growth becomes small.
(2) Ionic strength: with the increase of ionic strength, the effect on Cu2+ adsorption by variable charge soils significantly reduces.
(3) Organic acid: the effect of tartaric acid for Cu2+ adsorption by variable charge soils is the best, followed by oxalic acid and the control group; the adsorption rate of Cu2+ increases with the dosage increasing; but as the dosage increased, the growth rate significantly becomes small.
(4) Heavy metals: The presence of heavy metals inhibit the adsorption of Cu2+ by variable charge soils, the effect on Cu2+s adsorption by variable charge soils: Cd2+> Hg2+.
(5) Thermodynamics: as the temperature increases, the adsorption capacity increases; this may means the adsorption is an endothermic process. Langmuir and Freundlich models are used to describe the adsorption isotherms. Results indicate that Langmuir model is fit to experimental data well.
(6) Kinetics: the adsorption of variable charge soils on heavy metals is very fast, in about 2.0h adsorption equilibrium is achieved. The pseudo-second-order kinetic model is applied to
II
describe the kinetic data. The experimental data agrees with pseudo-second-order kinetic model well.
Keyword: Variable charge soil, Copper ion, adsorption
III
Ŀ¼
ժ Ҫ .................................................................... I Abstract ................................................................. II һ ............................................................... 1
1.1о ....................................................................................................................................... 1 1.2о״ ........................................................................................................................... 2 1.3ˮؽȾ״ ............................................................................................................... 2 1.3.1ˮؽȾ״ ................................................................................................ 3 1.3.2ˮؽȾ״ ................................................................................................ 3 1.4ؽڿɱ/ˮӰ ...................................................... 4 1.4.1ؽڿɱ/ˮ....................................................................... 4 1.4.2 ؽڿɱӰ ........................................................................... 5 1.5о弰 ........................................................................................................................... 6
ڶ ʵϡ豸ͷ ............................................... 7
2.1ʵԼ ........................................................................................................................... 7 2.1.1ʵԼ .................................................................................................................... 7 2.1.2ʵ ................................................................................................................................ 7 2.2鷽 ....................................................................................................................................... 8 2.2.1 ................................................................................................................................ 8 2.2.2ʵIJⶨ ............................................................................................................ 8 2.2.3Ӱʵ ........................................................................................................................ 8 2.2.4ѧо ............................................................................................................ 9 2.2.5ѧо ............................................................................................................ 9 2.3ʵ ............................................................................................................................... 9 2.3.1 ................................................................................................................................ 9
Ʒʵı ............................................ 11
3.1 XRF ............................................................................................................................................... 11 3. 2λȷpHZPC ........................................................................................................ 11 3. 3ƷʵIJⶨ ................................................................................................ 12 3.4 FT-IRײⶨ .................................................................................................................... 12
III