第一范文网 - 专业文章范例文档资料分享平台

机械原理--速度瞬心习题 

来源:用户分享 时间:2025/7/23 20:24:21 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

习题 > 答案

一.概念

1.当两构件组成转动副时,其相对速度瞬心在 转动副的圆心 处;组成移动副时,其瞬心在 垂直于移动导路的无穷远 处;组成滑动兼滚动的高副时,其瞬心在接触点两轮廓线的公法线上.

2.相对瞬心与绝对瞬心相同点是 都是两构件上相对速度为零,绝对速度相等的点 ,而不同点是 相对瞬心的绝对速度不为零,而绝对瞬心的绝对速度为零 .

3.速度影像的相似原理只能用于 同一构件上的 两点,而不能用于机构 不同构件上 的各点.

4.速度瞬心可以定义为互相作平面相对运动的两构件上,相对速度为零,绝对速度相等 的点.

5.3个彼此作平面平行运动的构件共有 3 个速度瞬心,这几个瞬心必位于 同一条直线上 .含有6个构件的平面机构,其速度瞬心共有 15 个,其中 5 个是绝对瞬心,有 9 个相对瞬心. 二.计算题

1、

2.关键:找到瞬心P36

6 Solution:

The coordinates of joint B are yB=ABsinφ=0.20sin45°=0.141m xB=ABsinφ=0.20sin45°=0.141m

The vector diagram of the right Fig is drawn by representing the RTR (BBD) dyad.

The vector equation, corresponding to this loop, is written as

rB+

r-rD=0 or

r=r-rDB

Where

r=BD and r=γ.

When the above vectorial equation is projected on the x and y axes, two scalar equations are obtained: r*cos(φ3+π)=xD-x

B=-0.141m

r*sin(φ3+π)=yD-yB=-0.541m

Angle φ3 is obtained by solving the system of the two previous scalar equations:

0.541tgφ3=0.141 ?φ3=75.36°

The distance r is

xD?xBcos(?3??)=0.56m r=

The coordinates of joint C are

xC=CDcosφ3=0.17m yC=CDsinφ3-AD=0.27m

For the next dyad RRT (CEE), the right Fig, one can write Cecos(π- φ4)=xE- xC Cesin(π- φ4)= yE- yC

Vector diagram represent the RRT (CEE) dyad.

When the system of equations is solved, the unknowns φ4 and xE are obtained: φ4=165.9° xE=-0.114m

7. Solution: The origin of the system is at A, A≡0; that is, xA=yA=0.

The coordinates of the R joints at B are xB=l1cosφ yB= l1sinφ

For the dyad DBB (RTR), the following equations can be written with respect to the sliding line CD:

mxB- yB+n=0 yD=mxD+n

With x, yD=0 from the above system, slope m of link CD and intercept n can be calculated:

D=d

1l1sin?d1l1sin?lcos??d1 n=d1?l1cos? m=1The coordinates xC and yC of the center of the R joint C result from the system of two equations:

l1sin?dlsin?xC?11lcos??d1d1?l1cos?,

yC=mxC+n=1(xC- xD)+(yC- yD)=l

2223Because of the quadratic equation, two solutions are abstained for xC and yC.For continuous motion of the mechanism, there are constraint relations for the Choice of the correct solution; that is xC< xB< xD and yC>0

For the last dyad CEE (RRT), a position function can be written for joint E: (x-x)+(y-h)=l

CE2C224The equation produces values for xE1 and xE2, and the solution xE >xC is selected for continuous motion of the mechanism.

搜索更多关于: 机械原理--速度瞬心习题  的文档
机械原理--速度瞬心习题 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c388lr9t7265nrao1skkn_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top