数列的通项公式与求和问题等综合问题
(一)选择题(12*5=60分)
an2?21.设数列?an?满足a1?a,an?1?(n?N*),若数列?an?是常数列,则a?( )
an?1A.?2 【答案】A
B.?1
C.0
D.(?1)
n 2.已知等差数列?an?的公差d?0,Sn是其前n项和,若a2 , a3 , a6成等比数列,且a10??17,则小值是( )
15315A.? B.? C.? D.?
28832Sn的最2n【答案】A
d??2,Sn?2n?n2, a10?a1?9d??17,∴a1?1 ,【解析】?a1?2d???a1?d??a1?5d??d??2a1 ,2Sn?1SnSn?1SnSn1????n?4,,时,最小.选A. 2n?12n2n?12n2n23. 【2018陕西西安五中联考】已知等差数列?an?的公差d?0,且a1,a3,a13成等比数列,若a1?1, Sn为数列?an?的前n项和,则
2Sn?16 的最小值为( )
an?3A. 3 B. 4 C. 23?2 D. 【答案】B
9 22?a32?a1a13,?(1?2d)?1?12d,d?0,【解析】Qa1,a3,a13 成等比数列, a1?1, 解得d=2.
?an?1?(2n?1)?2n?1. Sn?n?2n?n?1?2?2?n2.
2Sn?162n2?16?n?1??2?n?1??99????n?1??2?2an?32n?2n?1n?1?n?1??9?2?4,当且仅当n?1 1
n?1?2S?169 时即n?2时取等号,且n取到最小值4,故选:A.
an?3n?14. 【2018云南昆明一中摸底】已知数列?an?的前n项和为Sn,且a1?2, Sn?1?4an?2,则数列?an?中的a12为( )
A. 20480 B. 49152 C. 60152 D. 89150 【答案】B
【解析】由S2?4a1?2有a1?a2?4a1?2,解得a2?8,故a2?2a1?4,又
an?2?Sn?2?Sn?1?4an?1?4an,于是an?2?2an?1?2?an?1?2an?,因此数列?an?1?2an?是以a2?2a1?4为首项,公比为2的等比数列,得an?1?2an?4?2n?1?2n?1,于是
an?1an??1,因此数列2n?12na?an?12n?a?12?2=49152, 1为公差的等差数列,解得n, ?1?n?1?n,a?n?2???n?是以1为首项,12nn2?2?故选B.
5.【2017届广东汕头市高三上学期期末】设Sn是数列{an}的前n项和,且Sn?A.
11 ?an,则an?( )
2211n?112111?() B.?()n?1 C.2?()n? D.()n 3223333【答案】D
6.已知数列?an?满足:a1?1,an?1?an1(n?N?).若bn?1?(n?2?)?(?1)(n?N?),b1???,
an?2an且数列?bn?是单调递增数列,则实数?的取值范围是( ) A.??2332 B.?? C.?? D.?? 3223【答案】D 【解析】因为an?1?an121111???1??1?2(?1)??1?(?1)2n?1?2n,所以an?2an?1anan?1anana12
bn?1?(n?2?)?2n,因为数列?bn?是单调递增数列,所以当n?2时
bn?1?bn?(n?2?)?2n?(n?1?2?)?2n?1?n?2??1?2?2??1???3;当n?1时,2b2?b1?(1?2?)?2??????23,因此??,选D. 23SS1S2,,…,15中最大的项为( ) a1a2a157.设等差数列?an?的前n项和为Sn,且满足S17?0,S18?0,则
A.
S7SSS B.8 C.9 D.10 a7a8a9a10【答案】C
n8. 【2018河南林州一中调研】数列{an}中,已知对任意正整数n,有a1?a2?a3?.....?an?2?1,则
a12?a22?......?an2?( )
A. 2n?1 B. 【答案】B
n?1【解析】当n?1时, a1?1,当n?2时, an?Sn?Sn?1?2n?1?2n?1?1?2n?1 ,所以an?2,
??21n14?1 C. 2n?1 D. 4n?1 33??????则an?42n?1 , a?a2?a3?......?an?1?4?4?......?4212222n?11?4n1n??4?1,选B. 1?43??9.【江西省K12联盟2018届质量检测】已知定义在R上的函数f?x?是奇函数且满足f?3?x???f?x?, ,则f?a5??f?a6??( ) f?1???3,数列?an?满足Sn?2an?n(其中Sn为?an?的前n项和)A. ?3 B. ?2 C. 3 D. 2 【答案】C
3
【解析】由函数f?x?是奇函数且满足f?3?x???f?x?,可知T=3,由Sn?2an?n,可得:
Sn?1?2an?1?n?1?n?2?,两式相减得: an?2an?2an?1?1,即an?2an?1?1,
an?1?2?an?1?1??n?2?,∴?an?1?是公比为2的等比数列,∴an?1?2n,∴a5??31,a6??63,
∴f?a5??f?a6??f??3?10?1??f??3?21??f??1??f?0???f?1??3,故选:C 10. 【2018河北衡水武邑中学三调】已知数列?an?与?bn?的前n项和分别为Sn、Tn,且
an?0,6Sn?a?3ann?N,bn?( ) A.
2n?*?2an?2an?12an?1?1???*,若?n?N,k?Tn恒成立,则k的最小值是
118 B. C. 49 D. 749441【答案】B
11.若数列?an?满足?2n?3?an?1??2n?5?an??2n?3??2n?5?lg?1?的第100项为( )
??1??an?a?5,且,则数列??1?n??2n?3?A.2 B.3 C.1?lg99 D.2?lg99 【答案】B
【解析】由?2n?3?an?1??2n?5?an??2n?3??2n?5?lg?1???1?an?1an1可得:??lg(1?),记?n?2n?52n?3nbn?an1?an?,有bn?1?bn?lg(1?),由累加法得:bn?lgn?1,数列??的第100项为
2n?32n?3n??lg100?1?3,故选B.
4
相关推荐: