m2?4由①②可得,mk?m?k?4?0?k?.......10分1?m2
?m2?1,否则m2k2?m2?k2?4?0无意义?22222222222由??4mk?4k?4m?4?0?k?4?m?0
????222m?4m??m?422所以k2?4?m2??4?m??0?1?m?4 221?m1?m综上可得:m的取值范围是(?2,?1)?(1,2)?{0}.
????????????ON??OA?1??OB21. 解: (1)由x??x1??1???x2与??,
得N和M的横坐标相同。
对于区间[0,1]上的函数f(x)?x2,A(0,0),B(1,1),
2?????1??1则有MN?x?x2???x???,
2?4????????????1?1?1??MN??0,?,再由MN?k恒成立,可得k?.故k的取值范围为?,+??
4?4??4?eax2?eax1eax2?eax1ax?1 令G?x??F'(2)由题意知, ?? .则 ?x????ae?x2?x1x2?x1G?x1?=aeax1eax2?eax1eax1?a?x2?x1?????ax?x?e?1???21?? x2?x1x2?x1eax2?a?x1?x2?G?x2?=?ax?x?e?1???12?? x2?x1令??t???t?e?1 .则?'?t???1?e
tt当t<0时, ?'?t??0,??t?单调递减;当t>0时, ?'?t??0,??t?单调递增. 故当t≠0时, ??t????0??0 0,即?t?et?1?0,又因为x1?x2?0 从而?a?x2?x1??ea?x2?x1??1?0,?a?x1?x2??ea?x1?x2??1?0
所以G?x2??0,G?x1??0.
由零点存在性定理可得:存在c??x1,x2?,使得G?c??0
'又G?x?=ae?0 ,所以G?x?单调递增,故存在唯一的c,使得G?c??0.
2ax?1eax2?eax1?1eax2?eax1F'x??由G?c??0?c=ln.故当且仅当x0??ln ,x2?时, ?0?aa(x2?x1)?aa(x2?x1)?综上所述,存在
x0??x1,x2?,使
F'?x0????1eax2?eax1?x0成立,且的取值范围为?ln,x2?
?aa(x2?x1)?2请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)解:(1)曲线C的直角坐标方程为x?y?1,将?2?x?tcos?22代入x?y?1得
?y??2?tsin?t2?4tsin??3?0(*)
由16sin2??12?0,得|sin?|?所以,?的取值范围是(3,又0????, 2?2?3,3);
(2)由(*)可知,
?x?tcos?t1?t2?2sin?,代入?中, 2?y??2?tsin??x?sin2??2?????) 整理得P的中点的轨迹方程为 (为参数,P?1233y??1?cos2??23.(1)原不等式可化为:??x??1,??1?x?2,?x?2,或?或?
?1?2x?5,?3?5,?2x?1?5.
解得:x??2或x?3,所以解集为:(??,?2)?(3,??). (2)因为|x?2|?|x?1|?|x?2?(x?1)|?3, 所以 f(x)?3,当x??1时等号成立. 所以f(x)min?3. 又(log2a)?log故
欢迎访问“高中试卷网”——http://sj.fjjy.org 22a?3?(loga)?2log2a?3?0??1?log2a?3, 22
1?a?8. 2
相关推荐: