浙江省嘉兴市2019年中考数学试卷
一、选择题(本题有10小题,每题3分,共30分) 1.﹣2019的相反数是( ) A.2019
B.﹣2019
C.
D.﹣
【分析】根据相反数的意义,直接可得结论. 【解答】解:因为a的相反数是﹣a, 所以﹣2019的相反数是2019. 故选:A.
【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键. 2.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A.38×104
B.3.8×104
C.3.8×105
D.0.38×106
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:380000=3.8×105 故选:C.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A. B. C. D.
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:
故选:B.
【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.
4.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )
A.签约金额逐年增加
B.与上年相比,2019年的签约金额的增长量最多 C.签约金额的年增长速度最快的是2016年
D.2018年的签约金额比2017年降低了22.98% 【分析】两条折线图一一判断即可.
【解答】解:A、错误.签约金额2017,2018年是下降的. B、错误.与上年相比,2016年的签约金额的增长量最多. C、正确. D、错误.下降了:故选:C.
【点评】本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.
5.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是( )
≈9.3%.
A.tan60°
B.﹣1
C.0
D.12019
【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案. 【解答】解:由题意可得:a+|﹣2|=则a+2=3, 解得:a=1, 故a可以是12019. 故选:D.
+20,
【点评】此题主要考查了实数运算,正确化简各数是解题关键. 6.已知四个实数a,b,c,d,若a>b,c>d,则( ) A.a+c>b+d
B.a﹣c>b﹣d
C.ac>bd
D.>
【分析】直接利用等式的基本性质分别化简得出答案. 【解答】解:∵a>b,c>d, ∴a+c>b+d. 故选:A.
【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键. 7.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为( )
A.2
B.
C.
D.
【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可. 【解答】解:连接OA, ∵∠ABC=30°,
∴∠AOC=2∠ABC=60°,
∵过点A作⊙O的切线交OC的延长线于点P, ∴∠OAP=90°, ∵OA=OC=1, ∴AP=OAtan60°=1×故选:B.
=
,
【点评】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的
性质是解此题的关键,注意:圆的切线垂直于过切点的半径.
8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为( ) A.C.
B.D.
【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.
【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:
.
故选:D.
【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键. 9.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( )
A.(2,﹣1)
B.(1,﹣2)
C.(﹣2,1)
D.(﹣2,﹣1)
【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决. 【解答】解:∵点C的坐标为(2,1), ∴点C′的坐标为(﹣2,1), ∴点C″的坐标的坐标为(2,﹣1), 故选:A.
【点评】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.
相关推荐: