end
for i=3:(m-1) for j=1:n
X(i,j)=X(2,j)+(X(m,j)-X(2,j))*rand; end end
X=sort(X);
for i=1:m for j=1:n
x(i,j)=X(i+1,j)-X(i,j); end end x;
for i=1:m for j=1:n
c(i,j)=X(i,j)+x(i,j)*rand; end end c;
epoch=0; TT=[]; while J>tol J=0;
epoch=epoch+1; for k=1:n t=x(:,k);
w=f(c(:,k)); %wÎªÍøÂçȨֵ y=w'*t; EK=p-y;
u=1./(abs(t'*(df(c(:,k)))))^2; %ѧϰÂÊuµÄȡֵ c(:,k)=c(:,k)+u*(p-y)*t'*(df(c(:,k))); J=J+sum(EK.^2)/2; end
TT(epoch)=J; J
if J<=tol break; end end y
29
p epoch
plot(1:epoch,TT(1:epoch)); %»³öÐÔÄÜÖ¸±êJÓëµü´ú´ÎÊýµÄ±ä»¯Í¼ Êä³ö½á¹û˵Ã÷£º
Óø´»¯ÌÝÐμÆËã´Ë»ý·Öʱ£¬Ðè°Ñ»ý·ÖÇø¼ä1048576µÈ·Ý£¬²ÅÄÜ´ïµ½¸ø¶¨¾«¶È.»ý·Ö׼ȷֵΪ0.0022138479.ÔÚÉñ¾ÍøÂçËã·¨ÖÐ,È¡Éñ¾ÍøÂç½á¹¹Îª50 ¡Á1(¼´m=50£©£¬ÐÔÄÜÖ¸±ê£ºJ?10?8,ÔÚ[0,¦Ð]ÉÏÓÐ50ÖÖ·Ö·¨£¬ÑµÁ·Ñù±¾¼¯Îª{((?x1j,?x2j,?,?xmj),d)|j?1,2,?,50}.µÃµ½½á¹ûΪ£º0.002213848889£¬µü´ú590´Î.
3.2 Éñ¾ÍøÂçËã·¨ÔÚÊýÖµ·ÖÎö·½ÃæµÄÓ¦ÓÃ
3.2.1 Ä£ÄâÒì»òº¯ÊýÎÊÌâ
µ¥²ã¸ÐÖªÆ÷ÍøÂç²»ÄÜÄ£ÄâÒì»òº¯ÊýÎÊÌ⣬ÕâÀïÓöþ²ã¸ÐÖªÆ÷Éñ¾ÍøÂçÀ´ÊµÏÖ.Òì»òÎÊÌâÕæÖµ±í¼û±í3-1.
±í3-1 Òì»òÎÊÌâµÄÕæÖµ±í
ÊäÈëp1 p2
Êä³öa
0 0 0 1 0 1 0 1 1 1 1 0
Ê×ÏÈ£¬Òª´´½¨¡¢ÑµÁ·¡¢´¢´æ¸ÐÖªÆ÷Éñ¾ÍøÂ磬½Ó×ÅÊÇ·ÂÕæ£¬ÎÒÃÇÓÃMATLAB³ÌÐòʵÏÖ.
%¶à²ã¸ÐÖªÆ÷Éñ¾ÍøÂç·ÂÕæµÄMATLAB³ÌÐò clear all;
%³õʼ»¯Ëæ»ú¸ÐÖªÆ÷²ã
pr1=[0 1;0 1]; %ÉèÖÃËæ»ú¸ÐÖªÆ÷²ãÊäÈëÏòÁ¿Ã¿¸öÔªËØµÄÖµÓò net1=newp(pr1,3); %¶¨ÒåËæ»ú¸ÐÖªÆ÷²ã
net1.inputweights{1}.initFcn='rands'; %Ö¸¶¨Ëæ»ú¸ÐÖªÆ÷²ãȨֵ³õʼ»¯º¯ÊýÎªËæ%
»úº¯Êý
net1.biases{1}.initFcn='rands'; %Ö¸¶¨Ëæ»ú¸ÐÖªÆ÷²ã·§Öµ³õʼ»¯º¯ÊýÎªËæ»úº¯Êý net1=init(net1); %³õʼ»¯Ëæ»ú¸ÐÖªÆ÷²ã iw1=net1.IW{1} %Ëæ»ú¸ÐÖªÆ÷²ãµÄȨֵÏòÁ¿ b1=net1.b{1} %Ëæ»ú¸ÐÖªÆ÷²ãµÄ·§ÖµÏòÁ¿
%Ëæ»ú¸ÐÖªÆ÷²ã·ÂÕæ
p1=[0 0;0 1; 1 0;1 1]'; %ѵÁ·Ñù±¾Öµ
[a1 pf]=sim(net1,p1); %Ëæ»ú¸ÐÖªÆ÷²ã·ÂÕæ
%³õʼ»¯µÚ¶þ¸ÐÖªÆ÷²ã
pr2=[0 1;0 1;0 1]; %ÉèÖõڶþ¸ÐÖªÆ÷²ãÊäÈëÏòÁ¿Ã¿¸öÔªËØµÄÖµÓò net2=newp(pr2,1);
30
%ѵÁ·µÚ¶þ¸ÐÖªÆ÷²ã
net2.trainParam.epochs=10; net2.trainParam.show=1;
p2=ones(3,4); %³õʼ»¯µÚ¶þ¸ÐÖªÆ÷²ãµÄÊäÈëÏòÁ¿
p2=p2.*a1; %Ëæ»ú¸ÐÖªÆ÷²ãµÄ·ÂÕæÊä³ö½á¹û×÷ΪµÚ¶þ¸ÐÖªÆ÷²ãµÄÊäÈëÏòÁ¿ t2=[0 1 1 0]; %µÚ¶þ¸ÐÖªÆ÷²ãµÄÄ¿±êÏòÁ¿ [net2,tr2]=train(net2,p2,t2); %ѵÁ·µÚ¶þ¸ÐÖªÆ÷²ã
epoch2=tr2.epoch %Êä³öѵÁ·¹ý³Ì¾¹ýµÄÿһ²½³¤ perf2=tr2.perf %Êä³öÿһ²½ÑµÁ·½á¹ûµÄÎó²î iw2=net2.IW{1} %µÚ¶þ¸ÐÖªÆ÷²ãµÄȨֵÏòÁ¿ b2=net2.b{1} %µÚ¶þ¸ÐÖªÆ÷²ãµÄ·§ÖµÏòÁ¿
%´æ´¢ÑµÁ·ºóµÄÍø¸ñ save net34 net1 net2
ÒòÎªËæ»ú¸ÐÖªÆ÷µÄÊä³öÊÇËæ»úµÄ£¬ËùÒÔÕû¸öÍøÂç¿ÉÄܴﵽѵÁ·Îó²îÖ¸±ê£¬Ò²¿ÉÄÜ´ï²»µ½ÑµÁ·Îó²îÖ¸±ê.Òò´Ë£¬µ±´ï²»µ½ÑµÁ·Îó²îÖ¸±êʱ£¬ÐèÒª´ÓжԸÐÖªÆ÷²ãµÄȨֵºÍ·§Öµ½øÐгõʼ»¯¸³Öµ£¬ÔÚ±¾ÀýÖУ¬ÊÇͨ¹ý½«Æä³õʼ»¯º¯ÊýÉèÖÃÎªËæ»úº¯Êý£¬È»ºóÓÃinttº¯ÊýÖØÐ³õʼ»¯À´ÊµÏÖµÄ.¸Ã³ÌÐò¿ÉÄÜÒ»´ÎÔËÐв»µ½Éè¼ÆµÄÏÞÖÆ£¬ÐèÒª·´¸´ÔËÐУ¬Ö±ÖÁ´ïµ½ÒªÇóΪֹ.ÕýÒòΪÈç´Ë£¬Ã¿´ÎѵÁ·µÄ½á¹ûÒ²²»¾¡Ïàͬ.
ÆäÖдﵽѵÁ·Îó²îÖ¸±êµÄÒ»ÖÖÔËÐнá¹ûÈçÏ£º iw1 =
-0.8379 -0.3614 0.7022 -0.2502 0.1241 0.7356 b1 =
0.6954 -0.5815 -0.0898
TRAINC, Epoch 0/10 TRAINC, Epoch 1/10 TRAINC, Epoch 2/10 TRAINC, Epoch 3/10 TRAINC, Epoch 4/10 TRAINC, Epoch 5/10 TRAINC, Epoch 6/10 TRAINC, Epoch 7/10 TRAINC, Epoch 8/10
TRAINC, Performance goal met.
epoch2 =
0 1 2 3 4 5 6 7 8 perf2 =
0.5000 0.7500 0.5000 0.7500 0.5000 1.0000 0.7500
0.5000 0
31
iw2 =
2 2 1 b2 = -3
ѵÁ·Îó²îÐÔÄÜÇúÏßÈçͼ3-8Ëùʾ. clear all
%¼ÓÔØÑµÁ·ºóµÄÍø¸ñ load net34 net1 net2
%Ëæ»ú¸ÐÖªÆ÷²ã·ÂÕæ
p1=[0 0;0 1;1 0;1 1]'; %Ëæ»ú¸ÐÖªÆ÷ÊäÈëÏòÁ¿ a1=sim(net1,p1);
%Êä³ö¸ÐÖªÆ÷²ã·ÂÕæ£¬²¢Êä³ö·ÂÕæ½á¹û
p2=ones(3,4); %³õʼ»¯µÚ¶þ¸ÐÖªÆ÷²ãµÄÊäÈëÏòÁ¿ p2=p2.*a1;
a2=sim(net2,p2)
a2 =
0 1 1 0
¿ÉÒÔ¿´³ö£¬ËùÉè¼ÆµÄÍø¸ñ¿ÉÒÔÕýÈ·Ä£Äâ¡°Òì»ò¡±º¯ÊýµÄ¹¦ÄÜ.
Performance is 0, Goal is 010.90.8Training-Blue Goal-Black0.70.60.50.40.30.20.10012348 Epochs5678ͼ3-8 ѵÁ·Îó²îÐÔÄÜÇúÏß
3.2.2 »ùÓÚÉñ¾ÍøÂçµÄÊý×ÖÐźŴ¦Àí·ÖÎö
ÔçÆÚµÄÊý×ÖÐźŴ¦ÀíºÍͼÏñ´¦ÀíÖ÷ÒªÒÔÏßÐÔÂ˲¨Æ÷ΪÖ÷Òª´¦ÀíÊÖ¶Î.ÏßÐÔÂ˲¨Æ÷ÓÉ
32
Ïà¹ØÍÆ¼ö£º