第一范文网 - 专业文章范例文档资料分享平台

九年级数学-概率初步全章教案

来源:用户分享 时间:2025/10/23 13:55:12 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件

了解必然发生的事件、不可能发生的事件、随机事件的特点.

了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.

重点 随机事件的特点.

难点 判断现实生活中哪些事件是随机事件.

一、情境引入

分析说明下列事件能否一定发生:

①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.

二、自主探究 1.提出问题

教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.

学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.

2.概念得出:从上面的事件可看出,对于任何事件发生的可能性有三种情况: (1)必然事件:在一定条件下必然要发生的事件; (2)不可能事件:在一定条件下不可能发生的事件;

(3)随机事件:在一定条件下可能发生也可能不发生的事件. 3.随机事件发生的可能性有大小

袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.

(1)是白球还是黑球?

(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?

结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.

三、巩固练习 教材第128页 练习 四、课堂小结 (学生归纳,老师点评)

本节课应掌握:

(1)必然事件,不可能事件,随机事件的概念.

(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.

五、作业布置:教材第129页 练习1,2.

25.1.2 概 率

1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.

1

m

2.理解概率的定义及计算公式P(A)=,明确概率的取值范围,能求简单的等可能性事

n件的概率.

m

重点 在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=. n难点 了解概率的定义,理解概率计算的两个前提条件.

活动1 创设情境

(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?

(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?

这节课我们就来研究这个问题. 活动2 试验活动

试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)

试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)

(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?

(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?

活动3 引出概率

1.从数量上刻画一个随机事件A发生的可能性的大小,我们把它叫做这个随机事件A的概率,记为P(A).

2.概率计算必须满足的两个前提条件:

(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.

3.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=________.

4.随机事件A发生的概率的取值范围是________,如果A是必然发生的事件,那么P(A)=________,如果A是不可能发生的事件,那么P(A)=________.

活动4 精讲例题

例1 下列事件中哪些是等可能性事件,哪些不是?

(1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;

(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;

(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.

答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.

例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?

例4 教师引导学生分析讲解教材第133页例3.

2

活动5 过关练习

教材第133页 练习第1~3题.

补充:1.袋子中装有5个红球3个绿球,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?

2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.

(1)出现数字1的概率是多少?

(2)出现的数字是偶数的概率是多少?

(3)哪两个数字出现的概率相等?分别是多少?

53

答案:1.摸到红色球与摸到绿色球的可能性不相等,P(摸到红球)=,P(摸到绿球)=;

881211

2.(1);(2);(3)数字1和3出现的概率相同,都是,数字2和4出现的概率相同,都是.

6363

活动6 课堂小结与作业布置 课堂小结

m

1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=. n

2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置

教材第134页~135页 习题第3~6题.25.2 用列举法求概率(2课时)

第1课时 用列举法和列表法求概率

1.会用列举法和列表法求简单事件的概率.

2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.

重点 正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点 当可能出现的结果很多时,会用列表法列出所有可能的结果.

活动1 创设情境

我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:

老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?

学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.

21

(1)记满足两枚硬币一正一反的事件为A,则P(A)==;

4221

(2)记满足两枚硬币两面一样的事件为B,则P(B)==. 42

由此可知,双方获胜的概率一样,所以游戏是公平的.

当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.

3

活动2 探索交流

例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A,B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.

在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”

由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A,B两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?

实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:

B A 4 1 6 5 7 8 分析:首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个;接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4,5,7三个数字中的任意一个.当A盘指针指向6或8时,B盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.

学生独立填写表格,通过观察与计算,得出结论(即列表法).

B A 1 6 4 (1,4) (6,4) 5 (1,5) (6,5) 7 (1,7) (6,7) (8,4) (8,5) (8,7) 8 从表中可以发现:A盘数字大于B盘数字的结果共有5种,而B盘数字大于A盘数字的结果共有4种.

54

∴P(A数较大)=,P(B数较大)=,∴P(A数较大)>P(B数较大),∴选择A装置的获胜

99可能性较大.

4

搜索更多关于: 九年级数学-概率初步全章教案 的文档
九年级数学-概率初步全章教案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3dmug14ys60fvqu4yw276b8ve00zl600v2g_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top