考点:条形统计图;扇形统计图;加权平均数;众数。 解答:解:(1)
=50(人).
该班总人数为50人;
(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16, 图形补充如右图所示,众数是10; (3)
(5×9+10×16+15×14+20×7+25×4)=
×655=131元,
因此,该班平均每人捐款131元.
21.(2012临沂)某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍,求手工每小时加工产品的数量.
考点:分式方程的应用。
解答:解:设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件, 根据题意可得:
×=
,
解方程得x=27,
经检验,x=27是原方程的解, 答:手工每小时加工产品27件.
9
22.(2012临沂)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形, (2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;平行四边形的判定;菱形的判定。 解答:(1)证明:∵AF=DC, ∴AF+FC=DC+FC,即AC=DF. 在△ABC和△DEF中,
,
∴△ABC≌DEF(SAS), ∴BC=EF,∠ACB=∠DFE, ∴BC∥EF, ∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G, ∵四边形BCEF是平行四边形, ∴当BE⊥CF时,四边形BCEF是菱形, ∵∠ABC=90°,AB=4,BC=3, ∴AC=
=5,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG, ∴△ABC∽△BGC, ∴=即=
, ,
∴CG=, ∵FG=CG, ∴FC=2CG=
,
=,
∴AF=AC﹣FC=5﹣
10
∴当AF=时,四边形BCEF是菱形.
四、认真思考,你一定能成功!(本大题共2小题,9+10=19分) 23.(2012临沂)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC. (1)求证:AP是⊙O的切线; (2)求PD的长.
考点:切线的判定;圆周角定理;解直角三角形。 解答:(1)证明:连接OA. ∵∠B=60°, ∴∠AOC=2∠B=120°, 又∵OA=OC, ∴∠ACP=∠CAO=30°, ∴∠AOP=60°, ∵AP=AC, ∴∠P=∠ACP=30°, ∴∠OAP=90°, ∴OA⊥AP, ∴AP是⊙O的切线, (2)解:连接AD. ∵CD是⊙O的直径, ∴∠CAD=90°, ∴AD=AC?tan30°=3×
=
,
∵∠ADC=∠B=60°, ∴∠PAD=∠ADC﹣∠P=60°﹣30°, ∴∠P=∠PAD, ∴PD=AD=.
11
24.(2012临沂)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式; (3)试比较第10天与第12天的销售金额哪天多? 考点:一次函数的应用。 解答:解:(1)由图象得:120千克,
(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=kx, ∵点(12,120)在y=kx的图象, ∴k=10, ∴函数解析式为y=10x,
当12<x≤20,设日销售量与上市时间的函数解析式为y=kx+b, ∵点(12,120),(20,0)在y=kx+b的图象上, ∴∴
,
∴函数解析式为y=﹣15x+300, ∴小明家樱桃的日销售量y与上市时间x的函数解析式为:y=
;
(3)∵第10天和第12天在第5天和第15天之间, ∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b, ∵点(5,32),(15,12)在z=kx+b的图象上, ∴
,
12
相关推荐: