第一范文网 - 专业文章范例文档资料分享平台

全国初中数学竞赛辅导(初1)第04讲 一元一次方程.doc

来源:用户分享 时间:2025/11/19 5:21:43 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第四讲 一元一次方程

方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧. 用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.

如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.

只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.

一元一次方程ax=b的解由a,b的取值来确定:

(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解; (3)若a=0,且b≠0,方程变为0·x=b,则方程无解. 例1 解方程

解法1 从里到外逐级去括号.去小括号得

去中括号得

去大括号得

解法2 按照分配律由外及里去括号.去大括号得

化简为

去中括号得

去小括号得

例2 已知下面两个方程

3(x+2)=5x,①

4x-3(a-x)=6x-7(a-x) ②

有相同的解,试求a的值.

分析 本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.

解 由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有

4×3-3(a-3)=6×3-7(a-3), 7(a-3)-3(a-3)=18-12,

例3 已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.

解 由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有

2[2(x+3)-3(x-3)]=3×3,-2x=-21,

例4 解关于x的方程(mx-n)(m+n)=0.

分析 这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况. 解 把原方程化为

m2x+mnx-mn-n2=0,

整理得 m(m+n)x=n(m+n).

当m+n≠0,且m=0时,方程无解; 当m+n=0时,方程的解为一切实数.

说明 含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论. 例5 解方程

(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.

分析 本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程. 解 将原方程整理化简得

(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,

即 (a2-b2)x=(a-b)2.

全国初中数学竞赛辅导(初1)第04讲 一元一次方程.doc.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3k1377tjob4c2db011p1797950lpza00fc0_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top