第一范文网 - 专业文章范例文档资料分享平台

现代数字信号处理学习报告(二)

来源:用户分享 时间:2025/7/30 7:59:48 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第二部分 小波分析

2.1 小波

小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓

“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。

2.2 小波级数与傅里叶级数

小波级数

f(x)???c????(x)

c???f,???????f(x)??(x)dx

傅里叶级数

ck??f,ef(x)??kcke2?ikx

?ikxikx??12??f(x)e0dx

2.3 小波分析的发展

1981年,Stromberg对Harr系进行改进,证明了小波函数的存在性。 1984年Morlet—石油工程公司物理工程师,在分析地震波的局部时,发现传统的Fourier变换难以达到要求,因此他引入小波概念于信号

分析中对信号进行分解。

1986年,Meyer—调和分析专家,创造性的构造出了具有一定衰减性的光滑函数 。emarie和Battle,Stromberg分别独立的给出了具有指数衰减的小波函数。

1987年,Mallat and Meyer 提出了多分辨率分析。

2.4 连续小波变换

2.4.1 连续小波变换的定义

2.4.2 连续小波变换的性质

2.4.3 小波变换的内积定理

2.4.4 小波反变换

搜索更多关于: 现代数字信号处理学习报告(二) 的文档
现代数字信号处理学习报告(二).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3l3xu746d39acj39qpyw5s23r4b08q00emc_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top