将x=5代入y?x2?2x?3得y=12,∴F(5,12).将x=-3代入y?x2?2x?3得y=12,∴F(-3,12). 当AB为平行四边形的对角线时,点F即为点D, ∴F(1,?4). 综上所述,点F的坐标为(5,12),(?3,12)或(1,?4).
3315x?,当y=0,x=2;当x=?8时,y=?.
24215?) ∴A点坐标为(2,0),B点坐标为(?8,212由抛物线y??x?bx?c经过A、B两点,得
43、解:(1)对于y?yPCOEDBAx3?b???0??1?2b?c???4?y??1x2?3x?5.解得 ?15?442???16?8b?c?c?5??2 ??233x?与y轴交于点M 4233当x=0时,y=?. ∴OM=.
22(2)设直线y?22∵点A的坐标为(2,0),∴OA=2,∴AM=OA?OM?5. 2∴OM:OA:AM=3:4:5.
由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM ∽△PED. ∴DE:PE:PD=3:4:5
∵点P是直线AB上方的抛物线上一动点,
12353313x?x?)?(x?)=?x2?x?4 44242421212331848(?x?x?4)??x2?x? ∴l?5425553?l??(x?3)2?15
5∴PD?(?由题意知:?8?x?2 ?x??3时,l最大?15. 4、解:(1) ∵拋物线y1=ax2?2ax?b经过A(?1,0),C(0,
3)两点, 21?a????2a?2a?b?0?13??3∴?,∴,∴拋物线的解析式为y1= ?x2?x? 3b??b?22?2???2(2)解法一:过点M作MN⊥AB交AB于点N,连接AM 由y1= ?
123x?x?可知顶点M(1,2) ,A(?1,0),B(3,0),N(1,0) 22yMQAOPNBx∴AB=4,MN=BN=AN=2,AM=MB=22. ∴△AMN和△BMN为等腰直角三角形. ∵∠MPA+∠QPB=∠MPA +∠PMA=135° ∴∠QPB=∠PMA
又∵∠QBP=∠PAM=45°∴△QPB∽△PMA ∴
APBQ2? 将AM=22,AP=x+1,BP=3-x,BQ=22-y2代入, AMBP222-2y21252,即y2=x-x+. 223-xx+1?可得22yMQ∵点P为线段OB上一动点 (不与点B重合)∴0?x<3 则y2与x的函数关系式为y2=解法二:
过点M作MN⊥AB交AB于点N. 由y1= ?
125x?x?(0?x<3) 22AOPNBx123x?x?易得M(1,2),N(1,0),A(?1,0),B(3,0), 222
2
2
2
∴AB=4,MN=BN=2,MB=22,?MBN=45?. 根据勾股定理有BM ?BN =PM ?PN . ∴22??2?22=PM2??1?x?…①,
2y2?22 22又?MPQ=45?=?MBP,∴△MPQ∽△MBP,∴PM2?MQ?MB=由?、?得y2=
125x?x?. 22125x?x?(0?x<3) 22yPOEABP3Cx∵0?x<3,∴y2与x的函数关系式为y2=
??a?b?c?0?a??1??5、解:(1)由题意,得?c??3,解得?b?4
?c??3?b????2?2a∴抛物线的解析式为y??x?4x?3.
(2)①令?x?4x?3?0,解得x1?1,x2?3 ∴B(3, 0) 则直线BC的解析式为y?x?3 当点P在x轴上方时,如图1,
22P2图1过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为y?x?n,
?1). ∵直线AP过点A(1,0),∴直线AP的解析式为y?x?1,交y轴于点E(0,?y?x?1?x1?1?x2?2,解方程组?,得? ∴点P, ?1(21)2y?0y?1y??x?4x?3?1?2?当点P在x轴下方时,如图1,
?1),可知需把直线BC向下平移2个单位,此时交抛物线于点P2、P3, 根据点E(0,得直线P2P3的解析式为y?x?5,
yAB?3?17?3?17x?x??1?2?y?x?5??22解方程组?,得 ,??2?y??x?4x?3?y??7?17?y??7?1712???2?2∴P2(OxPFC图23?17?7?173?17?7?17,),P3(,) 2222综上所述,点P的坐标为:
P,,P2(1(21)3?17?7?173?17?7?17,),P3(,) 22220)C(0,?3) ②过点B作AB的垂线,交CP于点F.如图2,∵B(3,,∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45° 又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB
∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为y?1x?3. 3
四、中考数学压轴题专项训练答案
141.(1)y??x2?x;
33?12(0?t≤2)?4t?(2?t≤3)(2)S??t?1;
?111??t2?4t?(3?t?4)2?2(3)t=1或2.
132.(1)y??x2?x?2,D(3,2);
22(2)P2) P2(1(0,,3?413?41,?2),P3(,?2); 22?9+313?9?313(3)存在,点P的坐标为(13,)或(?13,).
225172) D(13),,y??x2?x?1; 3.(1)C(3,,66?52(0?t≤1)?4t??55(1?t≤2)(2)S??t?; 24??521525??4t?2t?4(2?t≤3)?(3)15. 4.(1)y?x2?2x?3; (2)41; 4(3)N1(?512),,N2(11140),,N3(?1,?4). 1355.(1)y??x2?x?; 44231848(2)①l??x2?x?,当x??3时,l最大?15; 555②P1(?3?17?3?17?7?89?7?89,,2)P2(,,2)P3(,). 22226); 6.(1)C(4,(2)a1?2,a2?2?22,a3?2?22; (3)m?2.
相关推荐: