¹ú¼Ò¿ª·Å´óѧµç´ó±¾¿Æ¡¶ÀëÉ¢Êýѧ¡·ÍøÂç¿ÎÐÎ
¿¼ÈÎÎñ1×÷Òµ¼°´ð°¸
µµÈÎÎñ£Ý gÑ¡ÔñÌâ ÌâÄ¿1 Èô¼¯ºÏA={ a, {a}, {1,2}},ÔòÏÂÁбíÊöÕýÈ·µÄÊÇ£¨£©¡¢ Ñ¡ÔñÒ»Ï A¡¢ {1 ,2}çè B¡¢ {×É£¬ËÅ»Ó4 C¡¢ {3}Q& D¡¢ 0e/l ÌâÄ¿2 Èô¼¯ºÏA={2, a, { a },4},ÔòÏÂÁбíÊöÕýÈ·µÄÊÇ£¨£©¡¢ Ñ¡ÔñÒ»Ï A¡¢ {a}Q^ B¡¢ 0&A C¡¢ {2}WA D¡¢ {a, {a}}3 ÌâÄ¿3 É輯ºÏ A={1 ,2,3,4}ÉϵĶþÔª¹ØÏµ R=K1,1>, , , , , ,2>, }, ÔòSÊÇ1?µÄ()±Õ°ü¡¢ Ñ¡ÔñÒ»Ï A¡¢ ´«µÝ B¡¢ ¶Ô³Æ C¡¢ ×Ô·´ºÍ´«µÝ D¡¢ ×Ô·´ ÌâÄ¿4 É輯ºÏ A={1,2,3}, B=(3,4,5}, C=(5,6,7},Ôò AUB-C =()¡¢ Ñ¡ÔñÒ»Ï A¡¢ £¨1,2,3,5} B¡¢ {4,5,6,7} C¡¢ {2,3,4,5} D¡¢
£¨1,2,3,4£© ÌâÄ¿5 Èç¹ûR1ºÍR2ÊÇAÉϵÄ×Ô·´¹ØÏµ£¬ÔòR1UR2, R1AR2, R1-R2ÖÐ×Ô·´¹ØÏµÓУ¨£©¸ö¡¢ Ñ¡ÔñÒ»Ï A¡¢1 B¡¢3 C¡¢2 D¡¢ 0 ÌâÄ¿6 ¼¯ºÏA={1,2,3,4}ÉϵĹØÏµR={|x=yÇÒx, y€A},ÔòRµÄÐÔÖÊΪ£¨£©¡¢ Ñ¡ÔñÒ»Ï A¡¢ ²»ÊÇ¶Ô³ÆµÄ B¡¢ ·´°×·´ C¡¢ ²»ÊÇ×Ô·´µÄ D¡¢ ´«µÝµÄ ÌâÄ¿7 Èô¼¯ºÏA={1,2}, B=£¨1,2, £¨1,2}},ÔòÏÂÁбíÊöÕýÈ·µÄÊÇ£¨£©¡¢ Ñ¡ÔñÒ»Ï A¡¢ Sc/£© , MzieS B¡¢ A£¨ZB ,ÇÒÒÀ S C¡¢4U¼¢ÇÒȯÃü D¡¢ Z^ctS ÇÒ»¨3 ÌâÄ¿8 ÉèA={a, b¡¢ c}, B=£¨1,2},×÷f£º A-B,Ôò²»Í¬µÄº¯Êý¸öÊýΪ£¨£©¡¢ Ñ¡ÔñÒ»Ï A¡¢3 B¡¢2 C¡¢8 D¡¢6 ÌâÄ¿9 ÉèÈë
µÚ 1 Ò³ ¹² 3 Ò³
={1,2,3,4,5,6,7,8}, RÊÇAÉϵÄÕû³ý¹ØÏµ£¬B=£¨2,4,6£©,Ôò¼¯ºÏBµÄ×î´óÔª¡¢×îСԪ¡¢ÉϽ硢ϽçÒÀ ´ÎΪ£¨£©¡¢ Ñ¡ÔñÒ»Ï A¡¢ 6¡¢ 2¡¢
6¡¢2 B¡¢56* 2¡¢ÎÞ¡¢2 C¡¢ 8¡¢ 1¡¢ 6¡¢1 D¡¢ 8¡¢ 2¡¢
8¡¢2 ÌâÄ¿10 É輯ºÏA ={1 ,2,3}Éϵĺ¯Êý·Ö±ðΪ£º f = ?1,2>, , }, g = (, , ], h = {, , }, Ôò h =()¡¢ Ñ¡ÔñÒ»Ï A¡¢5 B¡¢ gof C¡¢ gF D¡¢ f¡ãg ÅжÏÌâ ÌâÄ¿11 ÉèÈë={1,2}ÉϵĶþÔª¹ØÏµÎª4{6, y>|xA, yA, x+y =10},ÔòRµÄ×Ô·´±Õ°üΪ{?,1>, }¡¢()
Ñ¡ÔñÒ»?Ï ¶Ô ´í ÌâÄ¿12 ¿Õ¼¯µÄÄ»¼¯Êǿռ¯¡¢()
Ñ¡ÔñÒ»Ï ¶Ô ´í ÌâÄ¿13 ÉèÈË=²· b}, B=(1,2), C=(a, b},´Ó A µ½ B µÄº¯Êý f={¡¢ },´Ó B µ½ C µÄº¯Êý g={, }, Ôò g¡ã f ={, }¡¢()
µÚ 2 Ò³ ¹² 3 Ò³
Ñ¡ÔñÒ»Ï ¶Ô ´í ÌâÄ¿14 É輯ºÏ A={1,2,3,4}, B={2,4,6,8),ÏÂÁйØÏµ f = ?1,8>, , , , , , },ÔòR¾ßÓз´×Ô·´ÐÔÖÊ¡¢()
Ñ¡ÔñÒ»Ï ¶Ô ´í ÌâÄ¿18 É輯ºÏ A={1,2,3}, B={1,2},Ôò P(A)-P(B )= {{3}, {1,3}, (2,3}, (1,2,3}}¡¢()
Ñ¡ÔñÒ»Ï ¶Ô ´í ÌâÄ¿19 Èô¼¯ºÏA= {1,2,3}ÉϵĶþÔª¹ØÏµR={, , },ÔòRÊǶԳƵĹØÏµ¡¢()
Ñ¡ÔñÒ»Ï ¶Ô ´í ÌâÄ¿20 É輯ºÏ A={1,2,3,4 }, B=(6,8,12}, A µ½ B µÄ¶þÔª¹ØÏµ R=ÄÇô R-l=?6,3>, }¡¢()
Ñ¡ÔñÒ»Ï
µÚ 3 Ò³ ¹² 3 Ò³
Ïà¹ØÍÆ¼ö£º