第一范文网 - 专业文章范例文档资料分享平台

新课标人教A版高中数学必修1知识点总结

来源:用户分享 时间:2025/10/26 11:32:50 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

定义域 值域 过定点 奇偶性 单调性 在(0,??)上是增函数 (0,??) R 图象过定点(1,0),即当x?1时,非奇非偶 在(0,??)上是减函数 y?0. 函数值的 变化情况 logax?0(x?1)logax?0(x?1)logax?0(0?x?1) logax?0(x?1)logax?0(x?1)logax?0(0?x?1) a变化对 图象的影响 (6)反函数的概念

设函数

在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高. y?f(x)的定义域为A,值域为C,从式子y?f(x)中解出x,得式子x??(y).如果对于y在C??(y),x在A中都有唯一确定的值和它对应,那么式子x??(y)表示x是y的函数,

中的任何一个值,通过式子x函数x??(y)叫做函数y?f(x)的反函数,记作x?f?1(y),习惯上改写成y?f?1(x).

(7)反函数的求法

①确定反函数的定义域,即原函数的值域;②从原函数式③将xy?f(x)中反解出x?f?1(y);

?f?1(y)改写成y?f?1(x),并注明反函数的定义域.

(8)反函数的性质 ①原函数

②函数

y?f(x)与反函数y?f?1(x)的图象关于直线y?x对称.

y?f(x)的定义域、值域分别是其反函数y?f?1(x)的值域、定义域.

③若P(a,b)在原函数④一般地,函数

y?f(x)的图象上,则P'(b,a)在反函数y?f?1(x)的图象上.

y?f(x)要有反函数则它必须为单调函数.

〖〗幂函数

(1)幂函数的定义 一般地,函数

y?x?叫做幂函数,其中x为自变量,?是常数.

(2)幂函数的图象 (3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于

y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.

②过定点:所有的幂函数在(0,??)都有定义,并且图象都通过点(1,1). ③单调性:如果??0,则幂函数的图象过原点,并且在[0,??)上为增函数.如果??0,则幂函数的图象在(0,??)y轴.

?qp上为减函数,在第一象限内,图象无限接近x轴与

④奇偶性:当?为奇数时,幂函数为奇函数,当?为偶数时,幂函数为偶函数.当?qpq(其中p,q互质,p和q?Z),p是偶函数,若

若则

p为奇数q为奇数时,则y?x是奇函数,若

p为奇数q为偶数时,则y?xp为偶数q为奇数时,

y?xqp是非奇非偶函数.

⑤图象特征:幂函数在直线

y?x?,x?(0,??),当??1时,若0?x?1,其图象在直线y?x下方,若x?1,其图象

y?x上方,当??1时,若0?x?1,其图象在直线y?x上方,若x?1,其图象在直线y?x下方.

〖补充知识〗二次函数

(1)二次函数解析式的三种形式 ①一般式:

f(x)?ax2?bx?c(a?0)②顶点式:f(x)?a(x?h)2?k(a?0)③两根式:

f(x)?a(x?x1)(x?x2)(a?0)(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求

(3)二次函数图象的性质 ①二次函数

f(x)更方便.

f(x)?ax2?bx?c(a?0)的图象是一条抛物线,对称轴方程为x??b,顶点坐标是2ab4ac?b2(?,).

2a4a②当a?0时,抛物线开口向上,函数在(??,?bbb时,]上递减,在[?,??)上递增,当x??2a2a2abbb在[?当x??]上递增,,??)上递减,

2a2a2a4ac?b2fmin(x)?4a时,

;当a?0时,抛物线开口向下,函数在(??,?4ac?b2fmax(x)?4a.

③二次函数

f(x)?ax2?bx?c(a?0)当??b2?4ac?0时,图象与x轴有两个交点

M1(x1,0),M2(x2,0),|M1M2|?|x1?x2|?(4)一元二次方程ax2?. |a|?bx?c?0(a?0)根的分布

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.

设一元二次方程ax2?bx?c?0(a?0)的两实根为x1,x2,且x1?x2.令f(x)?ax2?bx?c,从以下四个方

面来分析此类问题:①开口方向:a ②对称轴位置:x??b ③判别式:? ④端点函数值符号. ①k<x1≤x2 ?

yf(k)?0a?0?Okx1x2xx??b2a

②x1≤x2<k ?

ya?0f(k)?0?xOx21kxx??b2a

③x1<k<x2 ? af(k)<0

ya?0xOk1x2x?f(k)?0

④k1<x1≤x2<k2 ?

ya?0?f(k1)?0f?(k2)?0Ox1x2k1k2xx??b2a 2ayx??b2akxO1x2xf(?k)?0a?0

yx??b2aOx1xk2xa?0?f(k)?0

y?f(k)?0x1Okx2xa?0

yx??b2akO1kx21x2x?f(k)?0?1a?0f(k2)?0 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 ? f(k1)f(k2)?0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合

y?f(k1)?0a?0yf(k1)?0?Ok1x1?k2x2xOx1k1x2?k2xf(k2)?0

a?0f(k2)?0

⑥k1<x1<k2≤p1<x2<p2 ? 此结论可直接由⑤推出. (5)二次函数 设

f(x)?ax2?bx?c(a?0)在闭区间[p,q]上的最值

f(x)在区间[p,q]上的最大值为M,最小值为m,令x0?(Ⅰ)当a1(p?q). 2?0时(开口向上)

①若?

bbbb?p,则m?f(p) ②若p???q,则m?f(?) ③若??q,则m?f(q) 2a2a2a2afOfxOfxfOfxfbb?x0,则M?f(q) ②??x0,则M?f(p) 2a2a①若? ffbbbOx?b?q,则M?f(q) ?p,则?q,则M?f(?) ③若OM?f(p) ②若xp??2a2a2a2a(Ⅱ)当a?0时(开口向下) ①若?

ffffOfxOxOxfff

新课标人教A版高中数学必修1知识点总结.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3qo698ypjl1is530855j3blzb1bw3200hmu_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top