2013年中考数学压轴题及解析分类汇编
2013年中考数学压轴题及解析分类汇编 2013中考数学压轴:相似三角形问题 2013中考数学压轴题函数相似三角形问题(一) 2013中考数学压轴题函数相似三角形问题(二) 2013中考数学压轴题函数相似三角形问题(三) 2013中考数学压轴:等腰三角形问题 2013中考数学压轴题函数等腰三角形问题(一) 2013中考数学压轴题函数等腰三角形问题(二) 2013中考数学压轴题函数等腰三角形问题(三) 2013中考数学压轴:直角三角形问题 2013中考数学压轴题函数直角三角形问题(一) 2013中考数学压轴题函数直角三角形问题(二) 2013中考数学压轴题函数直角三角形问题(三) 2013中考数学压轴:平行四边形问题 2013中考数学压轴题函数平行四边形问题(一) 2013中考数学压轴题函数平行四边形问题(二) 2013中考数学压轴题函数平行四边形问题(三) 2013中考数学压轴:梯形问题 2013中考数学压轴题函数梯形问题(一) 2013中考数学压轴题函数梯形问题(二) 2013中考数学压轴题函数梯形问题(三) 2013中考数学压轴:面积问题 2013中考数学压轴题函数面积问题(一) 2013中考数学压轴题函数面积问题(二) 2013中考数学压轴题函数面积问题(三)
2013中考数学压轴题:函数相似三角形问题(一)
例1直线
分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向
2
旋转90°后得到△COD,抛物线y=ax+bx+c经过A、C、D三点.
(1) 写出点A、B、C、D的坐标;
(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;
(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“11闸北25”, 拖动点Q在直线BG上运动, 可以体验到, △ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种. 思路点拨
1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角. 2.用待定系数法求抛物线的解析式,用配方法求顶点坐标. 3.第(3)题判断∠ABQ=90°是解题的前提.
4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个. 满分解答
(1)A(3,0),B(0,1),C(0,3),D(-1,0).
2
(2)因为抛物线y=ax+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,所以
解得
所以抛物线的解析式为y=-x+2x+3=-(x-1)+4,顶点G的坐标为(1,4). (3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此CD//BG.因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ=90°.
因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么
.
22
Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况: ①当
时,
.解得
.所以
,
.
②当时,.解得.所以,.
图2 图3
考点伸展
第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB⊥BG;二是
.
我们换个思路解答第(3)题:
如图3,作GH⊥y轴,QN⊥y轴,垂足分别为H、N.
通过证明△AOB≌△BHG,根据全等三角形的对应角相等,可以证明∠ABG=90°.
在Rt△BGH中,①当
时,
,.
,
.
在Rt△BQN中,当Q在B上方时,②当
时,
. .
,
.
;当Q在B下方时,.同理得到
例2 Rt△ABC在直角坐标系内的位置如图1所示,反比例函数在第一
象限内的图像与BC边交于点D(4,m),与AB边交于点E(2,n),△BDE的面积为2.
(1)求m与n的数量关系; (2)当tan∠A=
时,求反比例函数的解析式和直线AB的表达式;
(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO与△EFP 相似,求点P的坐标.
图1
动感体验
请打开几何画板文件名“11杨浦24”,拖动点A在x轴上运动,可以体验到,直线AB保持斜率不变,n始终等于m的2倍,双击按钮“面积BDE=2”,可以看到,点E正好在BD的垂直平分线上,FD//x轴.拖动点P在射线FD上运动,可以体验到,△AEO与△EFP 相似存在两种情况. 思路点拨
1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口. 2.第(2)题留给第(3)题的隐含条件是FD//x轴.
3.如果△AEO与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况.
相关推荐: