则电位的通解为n????Ansin(x)ean?1??n?ya代入边界条件??y?0?U0得n?U0??Ansin(x)an?1m?两边同时乘以sin(x)并对x从0到a积分,并由aan?m?am?n时?sin(x)sin(x)dx?Am0aa2an?m?m?n时?sin(x)sin(x)dx?0得0aaaa?m?n?m?aAnsin(x)sin(x)dx?Am?0U0sin(ax)=?0?aa2n?1aa既U0(1?cosm?)?Amm?24U0则Am?(m?1,3,5)m?代入电位的通解方程得??
n?1,3,5??n??y4U0n?asin(x)en?a3.1设一点电荷q与无限大接地导体平面的距离为d,如图3.1所示。求: (1)空间的电位分布和电场强度;
(2)导体平面上感应电荷密度; (3)点电荷q所受的力。
(1)r1?(x,y,z?d)r2?(x,y,z?d)q4??0q4??0q4??0(11?)r1r21x?y?(z?d)222???(?1x?y?(z?d)222)E??????(2)在导体平面上有z=0,则r1?r2?E??x2?y2?d2qd2??0(x2?y2?d)322[(xxyyz?dz?d?)a?(?)a?(?3)az]xy33333r2r1r2r1r2r1az?s?az.?0E??2qd2?(x?y?d)2322
(3)由库仑定律得q(?q)q2F???az224??0(2d)16??0d3.6两无限大接地平行板电极,距离为d,电位分别为0和U0,板间充满电荷密度为的电荷,如题3.6图所示。求极板间的电位分布和极板上的电荷密度。
?0xd
解:板间电位满足泊松方程 ?2????0x ?0d边界条件为?(0)=0,?(d)=U0 对方程进行两次积分得 U?d?0x3????C1x?C2 代入边界条件得C2?0,C1?0?0
d?0d6?0d所以,板间电位分布为?0x3U0?0d
????(?)x6?0dd6?0
?0x2U0?0dE?????ax(??)2?0dd6?0)2dd6x=0极板上的电荷密度为
?U?d?s0?ax?D??00?0x?0d6x=d极板上的电荷密度为?U?d?sd?(?ax)?D?00?0x?dd33.8 一个沿z方向的长且中空的金属管,其横截面为矩形,金属管的三边保持零电位,而第
四边的电位为U,如题3.8图所示。求: (1)当U?U0时,管内的电位分布; (2)当U?U0sinD??0E?ax(?0x2??0U0??0d?yb时,管内的电位分布。
(1)电位分布满足拉普拉斯方程
?2??2????0即2?2?0?x?y2边界条件为?x?0,0?y?b?0?x?a,0?y?b?U0?y?0,0?x?a?0?y?b,0?x?a?0分离变量,设??f(x)g(y)代入方程并且两边同时除以f(x)g(y)得f''(x)g''(y)??0f(x)g(y)f''(x)g''(y)设??则=??f(x)g(y)方程可写成以下形式f''(x)??f(x)?0(1)g''(y)??g(y)?0(2)
解方程(2)并要求满足边界条件
?y?0,0?x?a?0?y?b,0?x?a?0得只有??0时方程满足要求n2?2解得?n?2bgn(y)?sin(
n?y) b
将代入方程(1),并满足边界条件?x?0,0?y?b?0n?x)bn?n?则?n?Ansinh(x)sin(y)
bb解得fn(x)?Ansinh(则电位的通解为???Ansinh(n?1?
n?n?x)sin(y) bb代入边界条件?x?a,0?y?b?U得?x?a??Ansinh(n?n?a)sin(y)?Ubbn?1m?两边同时乘以sin(y)并对y从0到b积分,并由bbn?m?n?m时?sin(y)sin(y)dy?00bbbn?m?bn?m时?sin(y)sin(y)dy?得0bb2b?n?n?Asinh(a)sin(y)dyn?0?bbn?1?bn?n???An?sinh(a)sin(y)dy0bbn?1bm??Amsinh(a)2bbm? ??Usin(y)dy(3)0b?(1)U=U0时,由方程(3)得bbm? U0(1?cosm?)?Amsinh(a)m?2b1(m?1,3,5)m?sinh(a)b 代入电位的通解求得电位为n?sinh(x)?4U0n?b???sin(y)n?n?bn?1,3,5sinh(a)b则Am?4U0m?
相关推荐: