武汉科技大学2011届机电与控制工程学院学士论文(设计)
SIMULINK软件进行仿真,灵活修正调节器的参数,对所得到的仿真曲线和图形进行分析,直到得到满意的结果。
1 绪论
1.1选题背景
直流调速是现代电力拖动自动控制系统中发展较早的技术。晶闸管-直流电动机调速系统以可控硅三相桥式全控整流电路构成系统的主电路,为现代工业提供了高效、高性能的动力。自70年代以来,国内外在电气传动领域内,大量地采用了“晶闸管直流电动机调速”技术(简称V—M调速系统)。尽管当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中V—M系统的应用量还是占有相当的比重 。在工程设计与理论学习过程中,会接触到大量关于调速控制系统的分析、综合与设计问题。传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始使用直流调速系统。它的发展过程是这样的:由最早的旋转变流机组控制发展为放大机、磁放大器控制;再进一步,用静止的晶闸管变流装置和模拟控制器实现直流调速;再后来,用可控整流和大功率晶体管组成的PWM控制电路实现数字化的直流调速,使系统快速性、可控性、经济性不断提高。调速性能的不断提高,使直流调速系统的应用非常广泛。
尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。近年来随着计算机的迅速发展,采用计算机对控制系统进行数学仿真的方法已被人们采纳。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 1.2 直流调速系统的概述
三十多年来,直流电机调速控制经历了重大的变革。首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装
5
武汉科技大学2011届机电与控制工程学院学士论文(设计)
置使直流电气传动完成了一次大的跃进。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起、制动性能,宜于在广泛范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切削机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。近年来,交流调速系统发展很快,然而直流拖动系统无论在理论上和实践上都比较成熟,并且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以直流调速系统在生产生活中有着举足轻重的作用。 1.3 直流电动机的调速方法
电动机是用以驱动生产机械的,根据负载的需要,常常希望电动机的转速能在一定甚至是宽广的范围内进行调节,且调节的方法要简单、经济。直流电动机在这些方面有其独到的优点。
直流电动机转速和其他参量之间的稳态关系可表示为
n?U?IR Ke?式中 n—转速(r/min); U—电枢电压(V);I—电枢电流(A); R—电枢回路总电阻(?);?—励磁磁通(Wb); Ke—由电机结构决定的电动势常数。 在上式中,
Ke是常数,电流I是由负载决定的,因此调节电动机的转速可
以有三种方法:① 调节电枢供电电压U;② 减弱励磁磁通?;③ 改变电枢回路电阻R。
对于要求在一定范围内无级平滑调速的系统来说,以调节电枢电压的方式为最好。改变电阻只能实现有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。因此,自动控制的直流调速系统往往以变压调速为主。 1.4 研究课题的目的和意义
6
武汉科技大学2011届机电与控制工程学院学士论文(设计)
在单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电压扰动的性能要差一些。双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗扰性能大有改善因此,在双闭环系统中,由电网电压波动引起的转速动态变化会比单闭环系统小得多。用经典的动态校正方法设计调节器须同时解决稳、准、快、抗干扰等各方面相互有矛盾的静、动态性能要求,需要设计者有扎实的理论基础和丰富的实践经验,而初学者则不易掌握,于是有必要建立实用的设计方法。大多数现代的电力拖动自动控制系统均可由低阶系统近似。若事先深入研究低阶典型系统的特性并制成图表,那么将实际系统校正或简化成典型系统的形式再与图表对照,设计过程就简便多了。这样,就有了建立工程设计方法的可能性。 1.5 论文的主要内容
本课题以直流电动机为对象,研究直流电动机开环,单闭环,转速、电流双闭环调速系统,基于直流电动机的基本方程给出动态结构图,建立开环,单闭环,双闭环调速系统的数学模型,深入学习和掌握MATLAB下的Simulink和Power System系统模型的搭建方法,并应用MATLAB/SIMULINK进行仿真,对仿真结果分析、研究,验证控制方案的合理性。
2 晶闸管相控整流器——直流电动机调速系统
2.1 晶闸管简介
晶闸管(Thyristor)是晶闸管的简称,又称作可控硅整流器,以前被简称为可控硅(SCR)。在电力二极管开始得到应用后不久,1956年美国贝尔实验室发明了晶闸管,到1957年美国通用电气公司开发出世界上第一只晶闸管,并于1958年达到商业化。由于其开通时刻可以控制,而且其他各方面性能均优于以前的汞弧整流器,因而立即受到广泛欢迎,从此开辟了电力电子技术迅速发展和广泛应用的崭新时代,其标志就是以晶闸管为代表的电力半导体器件的广泛应用,有人称之为继晶闸管发明和应用之后的又一次电子技术革命。 2.1.1 晶闸管的结构和工作原理
晶闸管是PNPN四层三端器件,分别命名为p1、n1、p2、n2四个区,共有三个PN结。晶闸管外形、结构及图形符号如下图所示。
7
武汉科技大学2011届机电与控制工程学院学士论文(设计)
图2.1 晶闸管外形、结构及图形符号
当在晶闸管的阳极与阴极之间加反向电压时,这时不管控制极的信号情况如何,晶闸管都不会导通。当在晶闸管的阳极与阴极之间加正向电压时,若在控制极与阴极之间没有电压或加反向电压,晶闸管还是不会导通。只有当在晶闸管的阳极与阴极之间加正向电压时,在控制极与阴极之间加正向电压,晶闸管才会导通。但晶闸管一旦导通,不管控制极有没有电压,只要阳极与阴极之间维持正向电压,则晶闸管就维持导通。下面来分析晶闸管的工作机理。
根据晶闸管的内部结构,可以把它等效地看成是两只晶体管的组合,其中,一只为PNP型晶体管VT1,另一只为NPN型晶体管VT2,中间的PN结为两管共用,如图2.2所示。
图2.2 晶闸管外形、结构及图形符号
当晶闸管的阳极与阴极之间加上正向电压时,这时VT1和VT2都承受正向电压,如果在控制极上加上一个对阴极为正的电压,就有控制电流Ig流过,它就是VT2的基极电流Ib2 ,经过VT2的放大,在VT2的集电极就产生电流Ic2=β2 Ib2=β2 Ig(β2为VT2的电流放大系数),而这个IC2又恰恰是VT1的基极电流Ib1,这个电流再经过VT1的放大作用,便得到VT1的集电极电流IC2=β1 Ib1=β1β2Ig(β1为VT1的电流放大系数),由于VT1的集电极和VT2的基极是接在一起的,所以这个电流又流入VT2的基极,再次放大。如此循环下去,形成强烈的正反馈,直至元件全部导通为止,这个导通过程是在极短的时间内完成的,一般不超过几微秒,称为“触发导通过程”。在晶闸管导通后,VT2的基极始终有比控制电流Ig大得多的电流流过,因此,当晶闸管一经导通,控制极即使去
8
相关推荐: