第一范文网 - 专业文章范例文档资料分享平台

[金版学案]2016高考数学理科二轮复习习题:专题5第三讲 空间向量与立体几何

来源:用户分享 时间:2025/7/10 23:48:49 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴△ABC为等边三角形. 二、填空题

7.等边三角形ABC与正方形ABDE有一个公共边AB,二面角CABD的余弦值为

3

,M、N分别是AC、BC的中点,则EM、AN3

1所成角的余弦值等于.

6解析:分别取AB、ED的中点F、G,连结FC、FG、CG.由题意知FC⊥AB,FG⊥AB,即∠C FG为二面角CABD的平面角,

3

设AB=1,则FC=,

2在△CFG中, CG=

33

FC2+FG2-2FC·FG·=.

32

∴CG=CF,取FG中点O,以O为坐标原点,建立如图所示空间直角坐标系,

??11??11?2?

E?2,2,0?,A?2,-2,0?,C?0,0,?, ????2??

?1?1?11?12?12?

?????-,-,0则M,-,,B=2,N-,-,?, 2??44?44??4?4

9

?132?→∴EM=?-,-,?,

44??4?312?→?AN=-,,?, 4??44

→·AN→EM118

∴cosEM→,AN→=|EM→==|·|AN→|336.

2·2

8.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:

①AC⊥BD;

②△ACD是等边三角形;

③AB与平面BCD所成的角为60°; ④AB与CD所成的角为60°. 其中正确的序号是①②④.

解析:取BD中点为O,连接AO,CO,则AO⊥BD, CO⊥BD.

∴BD⊥平面AOC, ∴AC⊥BD.

又AC=2AO=AD=CD, ∴△ACD是等边三角形.

10

而∠ABD是AB与平面BCD所成的角,应为45°. →=AB→+BD→+DC→(设AB=a), 又AC

??2?2?则a=a+2a+a+2·a·2a·?-?+2a·2a·?-?+2a2cos

2?2???

2

2

2

2

→,DC→〉〈AB,

→,DC→〉=1, ∴cos〈AB

2∴AB与CD所成的角为60°. 三、解答题

9.如图,在长方体ABCDA1B1C1D1中,E、F分别是棱BC,CC1

上的点,CF=AB=2CE,AB∶AD∶AA1=1∶2∶4.

(1)求异面直线EF与A1D所成角的余弦值; (2)证明AF⊥平面A1ED; (3)求二面角A1EDF的正弦值.

解析:如图所示,建立空间直角坐标系,

11

点A为坐标原点,设AB=1,依题意得D(0,2,0),

?3??F(1,2,1),A1(0,0,4), E1,2,0?. ???1?→→?0,,1?,A1D=(0,2,-4) (1)易得EF=2

?

?

→·A→EF31D→,A→于是cosEFD==-. 1

5→||A→|EFD|

1

3

所以异面直线EF与A1D所成角的余弦值为.

5

?3?→?1?→→???(2)已知AF=(1,2,1),EA1=-1,-2,4, ED=-1,2,0?,

?

?

?

?

→·EA→=0,AF→·ED→=0.因此,AF⊥EA,AF⊥ED,又于是AF11

EA1∩ED=E,

所以AF⊥平面 A1ED. (3)设平面EFD的法向量

→=0,?u·EFu=(x,y,z),则?即

→=0,?u·ED

12

[金版学案]2016高考数学理科二轮复习习题:专题5第三讲 空间向量与立体几何.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3xqdc1nq7e3cwgj88zup_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top