第一范文网 - 专业文章范例文档资料分享平台

2015年小学奥数数论专题 - 奇数与偶数

来源:用户分享 时间:2025/7/10 18:59:18 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【答案】偶数

【解析】此题如果按步就班地把每个格子的数算出来,再去数一数奇数和偶数各有多少.然后得出奇数和偶数哪个多,哪个少的结论.显然花时间很多,不能在口试抢答中取胜.我们应该从整体上去比较奇偶数的多少.易知奇数行偶数多一个,偶数行奇数多个.所以前行中奇偶数一样,余下第行奇数行,答案可脱口而出.偶数多. 23. 如果把每个方格所在的行数和列数乘起来,填在这个方格,例如:81个数中是奇数多还是偶数多? 【答案】偶数

【解析】奇数行奇数多1个,偶数行全是偶数,显然偶数多。 24.试找出两个整数,使大数与小数之和加上大数与小数之差,再加上得出来,请写出这两个数,如果找不出来,请说明理由. 【答案】不能找出

【解析】因为两个数的和与两个数的差的奇偶性相同,所以的和是偶数.由结论三可知,这两数之和与这两数之差的和为偶数,再加1000还是偶数,所以它们的和不能等于奇数1999.

25. 你能不能将自然数1到9分别填入3×3的方格表中,使得每一行中的三个数之和都是偶数

【答案】不能

【解析】不能。此题学生容易想到九宫格数阵问题,其实不是。1到9中共有5个奇数,分别分成3组后会分布在每一行里面,也就是说要想实现每一行都是偶数,就需要每一行都有偶数个奇数,从而需要三行奇数的和是偶数,但是现在仅有5个奇数,所以无法填入。 26.你能不能将整数数0到8分别填入3×3的方格表中,使得每一行中的三个数之和都是奇数? 【答案】不能

【解析】不能。分析过程与例7类似。

27.任意交换某个三位数的数字顺序,得到一个新的三位数,原三位数与新三位数之和能否等于999? 【答案】不能

【解析】不能。2个三位数的和为999,说明在两个数相加时不产生任何进位。如果不产生进位说明两个三位数的数字之和相加求和,就会等于和的数字之和,这是一个今后在数字谜中的常用结论。那么999的数字之和是27,而原来的2个三位数经调换数字顺序后数字之和是不会变的,若以a记为其中一个三位数的数字之和,那么另一个也为a,则会有2a=27的矛盾式子出现。说明原式不成立。

28.两个四位数相加,第一个四位数每个数码都小于5,第二个四位数仅仅是第一个四位数的四个数码调换了位置,两个数的和可能是7356吗?为什么? 【答案】不能

【解析】不能。本题为上一例题的拓展练习。

等于

.如果找.问填入的

29.有一串数,最前面的四个数依次是1、9、8、7。从第五个数起,每一个数都是它前面相邻四个数之和的各位数字,那么在这一串数中,会依次出现1、9、8、8这四个数吗? 【答案】不会

【解析】不会。观察前4个数,奇偶性排列次序为奇奇偶奇,而一个数的奇偶性仅与它的个位数字有关,所以之后的第5个数为奇数,第6个为偶数,第7个为奇数,第8个为奇数,整体的出现规律为奇奇偶奇奇偶奇奇偶奇奇偶……,所以不肯能有两个连续的偶数,所以1、9、8、8不会出现。

30.数列,,,,,,,,,,的排列规律是前两个数是,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列前个数中共有几个偶数? 【答案】669

【解析】三个一组三个一组看,可以发现奇数,偶数交替变化的规律.可以发现有奇奇偶奇奇偶奇奇偶奇奇偶…这样的变化规律,因为,所以前个数有个偶数. 31. 黑板上写着两个数1和2,按下列规则增写新数,若黑板有两个数a和b,则增写a×b+a+b这个数,比如可增写5(因为1×2+1+2=5)增写11(因为1×5+1+5=11),一直写下去,问能否得到2008,若不能,说明理由,若能则说出最少需要写几次得到? 【答案】不可能

【解析】黑板上的数起初为一奇一偶,按照规则增写出的第三个数一定是一个奇数,第四个数如果选择仍由一奇一偶写出来的,那么仍然是奇数;另一种可以选择两个奇数开始,那么“奇×奇+奇+奇=奇”,所以不论如何增写,新增的数一定是奇数,所以不可能出现2008。 32. 在一次聚会时,朋友们陆续到来,见面时,有些人互相握手问好.主人很高兴,笑着说:“不论你们怎样握手,你们之中,握过奇数次手的人必定有偶数个.”请你想一想,主人为什么这么说,他有什么理由呢? 【答案】略

【解析】⑴ 握偶数次手的人:不管奇数个人还是偶数个人.总次数偶数次人数偶数 ⑵ 握奇数次手的总次数握手总次数偶数次握手总次数,即偶偶偶,而偶奇数次人数人数为偶数,由此证明.

33.元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么? 【答案】偶数

【解析】此题初看似乎缺总人数.但解决问题的实质在送贺年卡的张数的奇偶性上,因此与总人数无关.

由于是两人互送贺年卡,给每人分别标记送出贺年卡一次.那么贺年卡的总张数应能被整除,所以贺年卡的总张数应是偶数.

送贺年卡的人可以分为两种:一种是送出了偶数张贺年卡的人:他们送出贺年卡总和为偶数.另一种是送出了奇数张贺年卡的人:他们送出的贺年卡总数所有人送出的贺年卡总数-所有送出了偶数张贺年卡的人送出的贺年卡总数偶数偶数偶数.他们的总人数必须是偶数,才使他们送出的贺年卡总数为偶数.所以,送出奇数张贺年卡的人数一定是偶数

34.桌子上有6只开口向上的杯子,每次同时翻动其中的5只杯子,问能否经过若干次翻动,使得全部杯子的开口全都向下? 【答案】可能

【解析】杯子要翻过来得翻奇数次,6个杯子都要翻过来,则总共需要翻动(6×奇数)偶数次杯子;按规定每次同时翻动5只杯子,因为5是奇数,由奇数偶数偶数可知,要想翻动总次数也是偶数,需要将5只杯子翻动偶数次.因此有可能经过有限次翻动,使得全部杯子的开口全都向下.

35.桌子上有5个开口向上的杯子,现在允许每次同时翻动其中的4个,问能否经过若干次翻动,使得5个杯子的开口全都向下? 【答案】不能

【解析】不能,杯子要翻过来得翻奇数次,5个杯子都要翻过来,要把所有杯子都翻过来则总共需要翻动奇数次杯子,而每次同时翻动4个,那总次数是偶数,奇数不可能等于偶数,因此不能把5个杯子的开口全都向下.

36.桌子上有6只开口向上的杯子,每次同时翻动其中的4只杯子,问能否经过若干次翻动,使得全部杯子的开口全都向下? 【答案】可能

【解析】杯子要翻过来得翻奇数次,6个杯子都要翻过来,则总共需要翻动(6×奇数)偶数次杯子;按规定每次同时翻动4只杯子,因为4是偶数,所以翻动有限次后,翻动次数的总和也是偶数.因此有可能经过有限次翻动,使得全部杯子的开口全都向下.

37.沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由. 【答案】不能

【解析】不能。本题为俄罗斯小学生奥数竞赛题,可以给学生介绍。相邻的两个植物果实数目差1个意味着相邻2个植物的奇偶性不同,所以一定有4棵植物的果实为奇数个,总和一定为偶数,不能为225.

38.四个人一道去郊游,他们年龄的和是97岁,最小的一人只有10岁,他与年龄最大的人的岁数和比另外两人岁数的和大7岁.问:⑴ 年龄最大的人是多少岁?⑵ 另外两人的岁数的奇偶性相同吗?

【答案】(1)42(2)不同

【解析】先将四个人的岁数暂时分为两组进行分析,如果将97岁减去7岁,则两组人的岁数和相等(可以按照和差问题求出大小数),然后再求出年龄最大的人的岁数,再说明另外两人的岁数的奇偶性.⑴ 另外两人的岁数和是:(岁)年龄最大的人的岁数:

(岁)⑵ 因为另外两人的年龄和是45岁,是一个奇数,那么他们中一个的岁数

是奇数,另一个人的岁数是偶数,也就是他们的岁数的奇偶性不同. 39.在“”的方格中放棋子,每格至多放1枚棋子.若要求行、列、上的棋子数均为偶数.那么“”的方格中最多可以放多少枚棋子?

条斜线(如图所示)

【答案】16

【解析】如图,观察向左下倾斜的15条斜线,其中的方格数依次是:1,2,3,,7,8,7,,3,2,1,其中有8个奇数,表明有8条斜线中必须至少缺一个棋子.同理右下倾斜的斜线中,也有8条必须缺一个棋子.这样,总共至少缺16个子.下图表明缺16个棋子的时候是可以办到的,其中黑点占据的空格表示不放棋子的空格.

40.有8个棱长是1的小正方体,每个小正方体有三组相对的面,第一组相对的面上都写着数字1,第二组相对的面上都写着数字2,第三组相对的面上都写着数字3(如图).现在把这8个小正方体拼成一个棱长是2的大正方体.。问:是否有一种拼合方式,使得大正方体每一个面上的4个数字之和恰好组成6个连续的自然数?

【答案】没有

【解析】假设满足条件的大正方体ABCD-EFGH可以拼成(见图2),即它的每个面上的4个数字之和恰好组成6个连续的自然数.那么这个大正方体的六个面上的24个数字之和S就等于这6个连续自然数之和.又因为,6个连续自然数之中必有三个偶数、三个奇数,所以6个连续自然数之和必是奇数,即S是奇数.另一方面,考虑大正方体的8个顶点A、B、C、D、E、F、G、H,它们分别是一个小正方体的顶点.由于,交于这些顶点的小正方体的三个面互不相对,因此,在这三个面上所写的3个数字分别为1、2、3.这样大正方体的六个面上的24个数之和S=8×(1+2+3)=48.即S又应该是偶数.所以这是不可能的.

41.圆桌旁坐着2k个人,其中有k个物理学家和k个化学家,并且其中有些人总说真话,有些人则总说假话.今知物理学家中说假话的人同化学家中说假话的人一样多.又当问及:“你的右邻是什么人”时,大家全部回答:“是化学家.”那么请你证明:k为偶数. 【答案】略

【解析】由题目条件可发现不仅物理学家与化学家总人数相同,其中说真话与说假话的人数也分别相同,如果有a个物理学家说谎,同时也会有a个化学家说谎。所以总共有2a个人说谎。而最后发现有k个物理学家的身份被说谎的人改变了,每一个人只能影响有右邻的人,说明有k个说谎的人,那么k=2a,则说明k是偶数。

42.有一个袋子里边装着红、黄、蓝三种颜色的球,现在小峰每次从口袋中取出3个球,如果发现三个球中有两个球的颜色相同,就将第三个球放还回口袋,如果三个球的颜色各不相同,就往口袋中放一个黄球,已知原来有红球42个、黄球23个、蓝球43,那么取到不能再取的时候,口袋里还有蓝球,那么蓝球有多少个? 【答案】1

【解析】一共有108个球,每次取3还1,所以取到不能再取的时候还剩下2个球,对于每次取3个球,如果3个球颜色中有两个相同,那么第三个球还回去后,实际上取走了两个相同的球,如果每次取3个不同颜色的球,那么还回一个黄球,实际上黄球并没有被去掉,所以

2015年小学奥数数论专题 - 奇数与偶数.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c416q05g1e69ersa9pruq6ksx797jp100wlh_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top