£¨A£©y?x2£¨x?0£© £¨B£©y??x2£¨x?0£© £¨B£©y?x2£¨x?0£© £¨D£©y??x2£¨x?0£© ´ð°¸ B
½âÎö ±¾Ì⿼²é·´º¯Êý¸ÅÄî¼°Ç󷨣¬ÓÉÔº¯Êýx?0¿ÉÖªAC´í,Ôº¯Êýy?0¿ÉÖªD´í. 10.£¨2009È«¹ú¾í¢òÎÄ£©º¯Êýy=y?log2?x22?xµÄͼÏñ £¨ £©
£¨A£© ¹ØÓÚÔµã¶Ô³Æ £¨B£©¹ØÓÚÖ÷Ïßy??x¶Ô³Æ £¨C£© ¹ØÓÚyÖá¶Ô³Æ £¨D£©¹ØÓÚÖ±Ïßy?x¶Ô³Æ ´ð°¸ A
½âÎö ±¾Ì⿼²é¶ÔÊýº¯Êý¼°¶Ô³ÆÖªÊ¶£¬ÓÉÓÚ¶¨ÒåÓòΪ£¨-2£¬2£©¹ØÓÚÔµã¶Ô³Æ£¬ÓÖf(-x)=-f(x)£¬¹Êº¯ÊýÎªÆæº¯Êý£¬Í¼Ïñ¹ØÓÚÔµã¶Ô³Æ£¬Ñ¡A¡£ 11.£¨2009È«¹ú¾í¢òÎÄ£©Éèa?lge,b?(lge)2,c?lge,Ôò
£¨ £©
£¨A£©a?b?c £¨B£©a?c?b £¨C£©c?a?b £¨D£©c?b?a ´ð°¸ B
½âÎö ±¾Ì⿼²é¶ÔÊýº¯ÊýµÄÔö¼õÐÔ£¬ÓÉ1>lge>0,Öªa>b,ÓÖc=15.£¨2009°²»Õ¾íÎÄ£©Éè
£¬º¯Êý
12lge, ×÷É̱ȽÏÖªc>b,Ñ¡B¡£
£¨ £©
µÄͼÏñ¿ÉÄÜÊÇ
´ð°¸ C
½âÎö ¿ÉµÃx?a,x?bΪy?(x?a)(x?b)?0µÄÁ½¸öÁã½â. µ±x?aʱ,Ôòx?b?f(x)?0
µ±a?x?bʱ,Ôòf(x)?0,µ±x?bʱ,Ôòf(x)?0.Ñ¡C¡£
216.£¨2009½Î÷¾íÎÄ£©º¯Êýy??x?3x?42xA£®[?4,1] B£®[?4,0) C£®(0,1] D£®[?4,0)?(0,1]
µÄ¶¨ÒåÓòΪ £¨ £©
´ð°¸ D
x?0?½âÎö ÓÉ?2µÃ?4?x?0»ò0?x?1,¹ÊÑ¡D.
?x?3x?4?0?17.£¨2009½Î÷¾íÎÄ£©ÒÑÖªº¯Êýf(x)ÊÇ(??,??)ÉϵÄżº¯Êý£¬Èô¶ÔÓÚx?0£¬¶¼ÓÐ
£¬Ôòf(?2008)?f(2009)µÄf(x?2£©?f(x)£¬ÇÒµ±x?[0,2)ʱ£¬f(x)?log2(x?1£©ÖµÎª
£¨ £©
A£®?2 B£®?1 C£®1 D£®2
´ð°¸ C
2?log2?1,¹ÊÑ¡C. ½âÎö f(?2008)?f(2009)?f(0)?f(1)?log12y18.£¨2009½Î÷¾íÎÄ£©ÈçͼËùʾ£¬Ò»ÖʵãP(x,y)ÔÚxOyÆ½ÃæÉÏÑØÇúÏßÔ˶¯£¬ ËÙ¶È´óС²»±ä£¬ÆäÔÚxÖáÉϵÄͶӰµãQ(x,0)µÄÔ˶¯ËÙ¶ÈV?V(t)µÄͼÏó P(x,y)O´óÖÂΪ ( )
Q(x,0)x
V(t)V(t) V(t)V(t)O A B C D OtOOtt´ð°¸ B
½âÎö ÓÉͼ¿ÉÖª£¬µ±ÖʵãP(x,y)ÔÚÁ½¸ö·â±ÕÇúÏßÉÏÔ˶¯Ê±£¬Í¶Ó°µãQ(x,0)µÄËÙ¶ÈÏÈÓÉÕýµ½0¡¢µ½¸ºÊý£¬ÔÙµ½0£¬µ½Õý£¬¹ÊA´íÎó£»ÖʵãP(x,y)ÔÚÖÕµãµÄËÙ¶ÈÊÇÓÉ´óµ½Ð¡½Ó½ü0£¬¹ÊD´íÎó£»ÖʵãP(x,y)ÔÚ¿ªÊ¼Ê±ÑØÖ±ÏßÔ˶¯£¬¹ÊͶӰµãQ(x,0)µÄËÙ¶ÈΪ³£Êý£¬Òò´ËCÊÇ´íÎóµÄ£¬¹ÊÑ¡B.
t
?x2?4x?6,x?021.£¨2009Ìì½ò¾íÎÄ£©É躯Êýf(x)??Ôò²»µÈʽf(x)?f(1)µÄ½â¼¯ÊÇ£¨ £©
x?6,x?0?A.(?3,1)?(3,??) C.(?1,1)?(3,??) ´ð°¸ A
B.(?3,1)?(2,??) D.(??,?3)?(1,3)
½âÎö ÓÉÒÑÖª£¬º¯ÊýÏÈÔöºó¼õÔÙÔö µ±x?0£¬f(x)?2f(1)?3Áîf(x)?3, ½âµÃx?1,x?3¡£
µ±x?0£¬x?6?3,x??3
¹Êf(x)?f(1)?3 £¬½âµÃ?3?x?1»òx?3
¡¾¿¼µã¶¨Î»¡¿±¾ÊÔÌ⿼²é·Ö¶Îº¯ÊýµÄµ¥µ÷ÐÔÎÊÌâµÄÔËÓá£ÒÔ¼°Ò»Ôª¶þ´Î²»µÈʽµÄÇó½â¡£ 22.£¨2009Ìì½ò¾íÎÄ£©É躯Êýf(x)ÔÚRÉϵĵ¼º¯ÊýΪf¡¯(x),ÇÒ2f(x)+xf¡¯(x)>x2,xÏÂÃæµÄ²»µÈʽÔÚRÄÚºã³ÉÁ¢µÄÊÇ A.f(x)?0 ´ð°¸ A
½âÎö ÓÉÒÑÖª£¬Ê×ÏÈÁîx?0 £¬ÅųýB£¬D¡£È»ºó½áºÏÒÑÖªÌõ¼þÅųýC,µÃµ½A
¡¾¿¼µã¶¨Î»¡¿±¾ÊÔÌ⿼²ìÁ˵¼ÊýÀ´½â¾öº¯Êýµ¥µ÷ÐÔµÄÔËÓá£Í¨¹ý·ÖÎö½âÎöʽµÄÌØµã£¬¿¼²éÁË·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦¡£ 25.£¨2009ËÄ´¨¾íÎÄ£©ÒÑÖªº¯Êýf(x)ÊǶ¨ÒåÔÚʵÊý¼¯RÉϵIJ»ºãΪÁãµÄżº¯Êý£¬ÇÒ¶ÔÈÎÒâʵÊýx¶¼ÓÐ
5 xf(x?1)?(1?x)f(x)£¬Ôòf()µÄÖµÊÇ ( )
215 A. 0 B. C. 1 D.
22´ð°¸ A
( )
B.f(x)?0 C.f(x)?x D.f(x)?x
½âÎö Èôx¡Ù0£¬ÔòÓÐf(x?1)?1??11?xxf(x)£¬È¡x??12£¬ÔòÓУº
11 f()?f(??1)?2212f(?1)??f(?1)??f(1)£¨¡ßf(x)ÊÇżº¯Êý£¬Ôò
12222f(?11)?f() £©Óɴ˵Ãf()?0ÓÚÊÇ 22253f()?f(?1)?221?32f(3)?5f(3)?5f(1?1)?5[323232321?12]f(1)?5f(1)?0
122227.£¨2009ÁÉÄþ¾íÎÄ£©ÒÑ֪żº¯Êýf(x)ÔÚÇø¼ä?0,??)µ¥µ÷Ôö¼Ó£¬ÔòÂú×ãf(2x?1)£¼f()31µÄx ȡֵ·¶Î§ÊÇ £¨A£©£¨
133´ð°¸ A
13 £¬23 12 £¬23 12 £¬
23( ) £©
£¬
2£© B.£Û£© C.£¨£© D.£Û
½âÎö ÓÉÓÚf(x)ÊÇżº¯Êý,¹Êf(x)£½f(|x|) ¡àµÃf(|2x£1|)£¼f( µÃ|2x£1|£¼
1313),ÔÙ¸ù¾Ýf(x)µÄµ¥µ÷ÐÔ 13 ½âµÃ£¼x£¼
23
2x?4(x?4)µÄ·´º¯ÊýΪ
?129.£¨2009ÉÂÎ÷¾íÎÄ£©º¯Êýf(x)?£¨A£©f£¨C£©f?1
( )
(x)?(x)?1212x?4(x?0) B.f22(x)??112x?4(x?2)1222
?1x?2(x?0) (D)fѧ¿Æ(x)?x?2(x?2)
´ð°¸ D ½âÎö ÁîÔʽ ¹Êf?1y?f(x)?2x?4(x?2)y2?4y2Ôòy ?2x?4,¼´x???2222
(x)?12x?2(x?2) ¹ÊÑ¡D.
230.£¨2009ÉÂÎ÷¾íÎÄ£©¶¨ÒåÔÚRÉϵÄżº¯Êýf(x)Âú×㣺¶ÔÈÎÒâµÄx1,x2?[0,??)(x1?x2)£¬ÓÐ
f(x2)?f(x1)x2?x1?0.Ôò
( )
(A)f(3)?f(?2)?f(1) B.f(1)?f(?2)?f(3)
C. f(?2)?f(1)?f(3) D.f(3)?f(1)?f(?2) ´ð°¸ A
½âÎö ÓÉ(x2?x1)(f(x2)?f(x1))?0µÈ¼Û£¬ÓÚ
f(x2)?f(x1)x2?x1?0Ôòf(x)ÔÚ
x1,x2?(??,0](x1?x2)Éϵ¥µ÷µÝÔö, ÓÖf(x)ÊÇżº¯Êý,¹Êf(x)ÔÚ
*x1,x2?(0,??](x1?x2)µ¥µ÷µÝ¼õ.ÇÒÂú×ãn?Nʱ, f(?2)?f(2), 3>2?1?0,µÃ
f(3)?f(?2)?f(1),¹ÊÑ¡A.
32.£¨2009ËÄ´¨¾íÎÄ£©ÒÑÖªº¯Êýf(x)ÊǶ¨ÒåÔÚʵÊý¼¯RÉϵIJ»ºãΪÁãµÄżº¯Êý£¬ÇÒ¶ÔÈÎÒâ
Ïà¹ØÍÆ¼ö£º