16¡¢ÍÖÔ²½¹Èý½ÇÐÎÖÐ,Äڵ㵽һ½¹µãµÄ¾àÀëÓëÒԸý¹µãΪ¶ËµãµÄ½¹°ë¾¶Ö®±ÈΪ³£Êýe(ÀëÐÄÂÊ). £¨×¢:ÔÚÍÖÔ²½¹Èý½ÇÐÎÖÐ,·Ç½¹¶¥µãµÄÄÚ¡¢Íâ½Çƽ·ÖÏßÓ볤Öá½»µã·Ö±ð³ÆÎªÄÚ¡¢Íâµã.£© 17¡¢ÍÖÔ²½¹Èý½ÇÐÎÖÐ,ÄÚÐĽ«ÄÚµãÓë·Ç½¹¶¥µãÁ¬Ï߶ηֳɶ¨±Èe. 18¡¢ÍÖÔ²½¹Èý½ÇÐÎÖÐ,°ë½¹¾à±ØÎªÄÚ¡¢Íâµãµ½ÍÖÔ²ÖÐÐĵıÈÀýÖÐÏî. Æß¡¢Ë«ÇúÏߵij£ÓýáÂÛ£º
1¡¢µãP´¦µÄÇÐÏßPTƽ·Ö¡÷PF1F2ÔÚµãP´¦µÄÄÚ½Ç.
2¡¢PTƽ·Ö¡÷PF1F2ÔÚµãP´¦µÄÄڽǣ¬Ôò½¹µãÔÚÖ±ÏßPTÉϵÄÉäÓ°HµãµÄ¹ì¼£ÊÇÒÔ³¤ÖáΪֱ¾¶µÄÔ²£¬³ýÈ¥³¤ÖáµÄÁ½¸ö¶Ëµã.
3¡¢ÒÔ½¹µãÏÒPQΪֱ¾¶µÄÔ²±ØÓë¶ÔӦ׼ÏßÏཻ.
4¡¢ÒÔ½¹µã°ë¾¶PF1Ϊֱ¾¶µÄÔ²±ØÓëÒÔʵÖáΪֱ¾¶µÄÔ²ÏàÇÐ.£¨ÄÚÇУºPÔÚÓÒÖ§£»ÍâÇУºPÔÚ×óÖ§£©
x0xy0yx2y2?2?1. ??15¡¢ÈôPÔÚË«ÇúÏߣ¨a£¾0,b£¾0£©ÉÏ£¬Ôò¹ýµÄË«ÇúÏßµÄÇÐÏß·½³ÌÊÇ(x,y)P0000222ababx2y26¡¢ÈôP0(x0,y0)ÔÚË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©Íâ £¬Ôò¹ýPo×÷Ë«ÇúÏßµÄÁ½ÌõÇÐÏßÇеãΪP1¡¢P2£¬ÔòÇеãÏÒ
abP1P2µÄÖ±Ïß·½³ÌÊÇ
x0xy0y?2?1. a2bx2y27¡¢Ë«ÇúÏß2?2?1£¨a£¾0,b£¾o£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F 2£¬µãPΪ˫ÇúÏßÉÏÈÎÒâÒ»µã?F1PF2??£¬ÔòË«Çú
abÏߵĽ¹µã½ÇÐεÄÃæ»ýΪS?F1PF2?bcot2?2.
x2y28¡¢Ë«ÇúÏß2?2?1£¨a£¾0,b£¾o£©µÄ½¹°ë¾¶¹«Ê½£º(F1(?c,0) , F2(c,0)£©µ±M(x0,y0)ÔÚÓÒÖ§ÉÏʱ£¬
ab|MF1|?ex0?a,|MF2|?ex0?a£»µ±M(x0,y0)ÔÚ×óÖ§ÉÏʱ£¬|MF1|??ex0?a,|MF2|??ex0?a¡£
9¡¢Éè¹ýË«ÇúÏß½¹µãF×÷Ö±ÏßÓëË«ÇúÏßÏཻ P¡¢QÁ½µã£¬AΪ˫ÇúÏß³¤ÖáÉÏÒ»¸ö¶¥µã£¬Á¬½áAP ºÍAQ·Ö±ð½»ÏàÓ¦ÓÚ½¹µãFµÄË«ÇúÏß×¼ÏßÓÚM¡¢NÁ½µã£¬ÔòMF¡ÍNF.
10¡¢¹ýË«ÇúÏßÒ»¸ö½¹µãFµÄÖ±ÏßÓëË«ÇúÏß½»ÓÚÁ½µãP¡¢Q, A1¡¢A2Ϊ˫ÇúÏßʵÖáÉϵĶ¥µã£¬A1PºÍA2Q½»ÓÚµãM£¬A2PºÍA1Q½»ÓÚµãN£¬ÔòMF¡ÍNF.
b2x0x2y211¡¢ABÊÇË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄ²»Æ½ÐÐÓÚ¶Ô³ÆÖáµÄÏÒ£¬M(x0,y0)ΪABµÄÖе㣬ÔòKOM?KAB?2£¬
abay0¼´KABb2x0?2¡£ ay0x0xy0yx02y02x2y2ÔÚË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©ÄÚ£¬Ôò±»PoËùƽ·ÖµÄÖеãÏҵķ½³ÌÊÇ2?2?2?2.
ababab12¡¢ÈôP(0,y0)0xx2y2x2y2x0xy0y?2. 13¡¢ÈôP0(x0,y0)ÔÚË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©ÄÚ£¬Ôò¹ýPoµÄÏÒÖеãµÄ¹ì¼£·½³ÌÊÇ2?2?2ababab¡¾ÍÆÂÛ¡¿£º
x2y21¡¢Ë«ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄÁ½¸ö¶¥µãΪA1(?a,0),A2(a,0)£¬ÓëyÖáÆ½ÐеÄÖ±Ïß½»Ë«ÇúÏßÓÚP1¡¢P2ʱ
abx2y2A1P1ÓëA2P2½»µãµÄ¹ì¼£·½³ÌÊÇ2?2?1.
abx2y22¡¢¹ýË«ÇúÏß2?2?1£¨a£¾0,b£¾o£©ÉÏÈÎÒ»µãA(x0,y0)ÈÎÒâ×÷Á½ÌõÇãб½Ç»¥²¹µÄÖ±Ïß½»Ë«ÇúÏßÓÚB,CÁ½µã£¬
abÔòÖ±ÏßBCÓж¨ÏòÇÒkBCb2x0??2£¨³£Êý£©.
ay0x2y23¡¢ÈôPΪ˫ÇúÏß2?2?1£¨a£¾0,b£¾0£©ÓÒ£¨»ò×ó£©Ö§Éϳý¶¥µãÍâµÄÈÎÒ»µã,F1, F 2Êǽ¹µã, ?PF1F2??,
ab?PF2F1??£¬Ôò
c?a??c?a???tancot£¨»ò?tancot£©. c?a22c?a22x2y24¡¢ÉèË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄÁ½¸ö½¹µãΪF1¡¢F2,P£¨ÒìÓÚ³¤Öá¶Ëµã£©ÎªË«ÇúÏßÉÏÈÎÒâÒ»µã£¬ÔÚ¡÷PF1F2
abÖУ¬¼Ç?F1PF2??, ?PF1F2??,?F1F2P??£¬ÔòÓÐ
sin?c??e.
?(sin??sin?)ax2y25¡¢ÈôË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬×ó×¼ÏßΪL£¬Ôòµ±1£¼e¡Ü2?1ʱ£¬¿ÉÔÚË«
abÇúÏßÉÏÇóÒ»µãP£¬Ê¹µÃPF1ÊÇPµ½¶ÔӦ׼Ïß¾àÀëdÓëPF2µÄ±ÈÀýÖÐÏî.
x2y26¡¢PΪ˫ÇúÏß2?2?1£¨a£¾0,b£¾0£©ÉÏÈÎÒ»µã,F1,F2Ϊ¶þ½¹µã£¬AΪ˫ÇúÏßÄÚÒ»¶¨µã£¬Ôò
ab|AF2|?2a?|PA|?|PF1|,µ±ÇÒ½öµ±A,F2,PÈýµã¹²ÏßÇÒPºÍA,F2ÔÚyÖáͬ²àʱ£¬µÈºÅ³ÉÁ¢.
x2y2222227¡¢Ë«ÇúÏß2?2?1£¨a£¾0,b£¾0£©ÓëÖ±ÏßAx?By?C?0Óй«¹²µãµÄ³äÒªÌõ¼þÊÇAa?Bb?C.
abx2y28¡¢ÒÑ֪˫ÇúÏß2?2?1£¨b£¾a £¾0£©£¬OÎª×ø±êԵ㣬P¡¢QΪ˫ÇúÏßÉÏÁ½¶¯µã£¬ÇÒOP?OQ.
ab4a2b2a2b2111122
???;£¨2£©|OP|+|OQ|µÄ×îСֵΪ2£¨1£©;£¨3£©S?OPQµÄ×îСֵÊÇ2.
b?a2b?a2|OP|2|OQ|2a2b2x2y29¡¢¹ýË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄÓÒ½¹µãF×÷Ö±Ïß½»¸ÃË«ÇúÏßµÄÓÒÖ§ÓÚM,NÁ½µã£¬ÏÒMNµÄ´¹Ö±Æ½·ÖÏß½»
ab
xÖáÓÚP£¬Ôò
|PF|e?.
|MN|2x2y210¡¢ÒÑ֪˫ÇúÏß2?2?1£¨a£¾0,b£¾0£©,A¡¢BÊÇË«ÇúÏßÉϵÄÁ½µã£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëxÖáÏཻÓÚµãP(x0,0),
aba2?b2a2?b2Ôòx0?»òx0??.
aax2y211¡¢ÉèPµãÊÇË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©ÉÏÒìÓÚʵÖá¶ËµãµÄÈÎÒ»µã,F1¡¢F2ΪÆä½¹µã¼Ç?F1PF2??£¬Ôò
ab?2b22(1)|PF1||PF2|?.(2) S?PF1F2?bcot.
21?cos?x2y212¡¢ÉèA¡¢BÊÇË«ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄ³¤ÖáÁ½¶Ëµã£¬PÊÇË«ÇúÏßÉϵÄÒ»µã£¬?PAB??,
ab2ab2|cos?|?PBA??,?BPA??£¬c¡¢e·Ö±ðÊÇË«ÇúÏߵİ뽹¾àÀëÐÄÂÊ£¬ÔòÓÐ(1)|PA|?22.
|a?ccos2?|(2) tan?tan??1?e.(3) S?PAB22a2b2?2cot?. 2b?ax2y213¡¢ÒÑ֪˫ÇúÏß2?2?1£¨a£¾0,b£¾0£©µÄÓÒ×¼ÏßlÓëxÖáÏཻÓÚµãE£¬¹ýË«ÇúÏßÓÒ½¹µãFµÄÖ±ÏßÓëË«ÇúÏßÏà
ab½»ÓÚA¡¢BÁ½µã,µãCÔÚÓÒ×¼ÏßlÉÏ£¬ÇÒBC?xÖᣬÔòÖ±ÏßAC¾¹ýÏß¶ÎEF µÄÖеã.
14¡¢¹ýË«ÇúÏß½¹°ë¾¶µÄ¶Ëµã×÷Ë«ÇúÏßµÄÇÐÏߣ¬ÓëÒÔ³¤ÖáΪֱ¾¶µÄÔ²Ïཻ£¬ÔòÏàÓ¦½»µãÓëÏàÓ¦½¹µãµÄÁ¬Ïß±ØÓëÇÐÏß´¹Ö±.
15¡¢¹ýË«ÇúÏß½¹°ë¾¶µÄ¶Ëµã×÷Ë«ÇúÏßµÄÇÐÏß½»ÏàӦ׼ÏßÓÚÒ»µã£¬Ôò¸ÃµãÓë½¹µãµÄÁ¬Ïß±ØÓë½¹°ë¾¶»¥Ïà´¹Ö±. 16¡¢Ë«ÇúÏß½¹Èý½ÇÐÎÖÐ,Íâµãµ½Ò»½¹µãµÄ¾àÀëÓëÒԸý¹µãΪ¶ËµãµÄ½¹°ë¾¶Ö®±ÈΪ³£Êýe(ÀëÐÄÂÊ). (×¢:ÔÚË«ÇúÏß½¹Èý½ÇÐÎÖÐ,·Ç½¹¶¥µãµÄÄÚ¡¢Íâ½Çƽ·ÖÏßÓ볤Öá½»µã·Ö±ð³ÆÎªÄÚ¡¢Íâµã). 17¡¢Ë«ÇúÏß½¹Èý½ÇÐÎÖÐ,Æä½¹µãËù¶ÔµÄÅÔÐĽ«ÍâµãÓë·Ç½¹¶¥µãÁ¬Ï߶ηֳɶ¨±Èe. 18Ë«ÇúÏß½¹Èý½ÇÐÎÖÐ,°ë½¹¾à±ØÎªÄÚ¡¢Íâµãµ½Ë«ÇúÏßÖÐÐĵıÈÀýÖÐÏî. °Ë¡¢Å×ÎïÏߵij£ÓýáÂÛ£º
4ac?b2b?). ¢Ùay?by?c?x¶¥µã(4a2a2¢Úy2?2px(p?0)Ôò½¹µã°ë¾¶PF?x?P;x2?2py(p?0)Ôò½¹µã°ë¾¶ÎªPF?y?P.
22¢Ûͨ¾¶Îª2p£¬ÕâÊǹý½¹µãµÄËùÓÐÏÒÖÐ×î¶ÌµÄ.
?x?2pt2?x?2pt¢Üy?2px£¨»òx?2py£©µÄ²ÎÊý·½³ÌΪ?£¨»ò?£©£¨tΪ²ÎÊý£©. 2y?2pty?2pt??22 y2?2px ¡øy2??2px ¡øx2?2py x2??2py yy¡øy¡øyͼÐÎ OxxOxOxO p,0) 2 p,0) 2p) 2 p) 2 ½¹µã ×¼Ïß ·¶Î§ ¶Ô³ÆÖá ¶¥µã ÀëÐÄÂÊ ½¹µã F(F(?F(0,F(0,?y?p 2x?0,y?R x??p 2x?0,y?R x?p 2x?R,y?0 y??p 2x?R,y?0 xÖá yÖá £¨0,0£© e?1 PF?p?x1 2PF?p?x1 2PF?p?y1 2PF?p?y1 2Ô²×¶ÇúÏßµÄÐÔÖʶԱÈ
Ô²×¶ÇúÏß ±ê×¼·½³Ì ·¶Î§ ¶Ô³ÆÐÔ ¶¥µã ½¹µã ÍÖÔ² (x^2/a^2)+(y^2/b^2)=1 a>b>0 x¡Ê[-a,a] y¡Ê[-b,b] ¹ØÓÚxÖá,yÖá,Ôµã¶Ô³Æ (a,0),(-a,0),(0,b),(0,-b) (c,0),(-c,0) ¡¾ÆäÖÐc^2=a^2-b^2¡¿ Ë«ÇúÏß (x^2/a^2)-(y^2/b^2)=1 a>0,b>0 x¡Ê(-¡Þ,-a]¡È[a,+¡Þ) y¡ÊR ¹ØÓÚxÖá,yÖá,Ôµã¶Ô³Æ (a,0),(-a,0) (c,0),(-c,0) ¡¾ÆäÖÐc^2=a^2+b^2¡¿ x=¡À(a^2)/c Å×ÎïÏß y^2=2px p>0 x¡Ê[0,+¡Þ) y¡ÊR ¹ØÓÚxÖá¶Ô³Æ (0,0) (p/2,0) ×¼Ïß x=¡À(a^2)/c x=-p/2
½¥½üÏß ÀëÐÄÂÊ ½¹°ë¾¶ ¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª e=c/a,e¡Ê(0,1) ¨OPF1¨O=a+ex ¨OPF2¨O=a-ex y=¡À(b/a)x e=c/a,e¡Ê(1,+¡Þ) ¨OPF1¨O=¨Oex+a¨O¨OPF2¨O=¨Oex-a¨O p=(b^2)/c (2b^2)/a x=a¡¤sec¦È y=b¡¤tan¦È,¦ÈΪ²ÎÊý (x0x/a^2)-(y0¡¤y/b^2)=1 ¡ª¡ª¡ª¡ª¡ª e=1 ¨OPF¨O=x+p/2 ½¹×¼¾à ͨ¾¶ ²ÎÊý·½³Ì p=(b^2)/c (2b^2)/a x=a¡¤cos¦È y=b¡¤sin¦È£¬¦ÈΪ²ÎÊý p 2p x=2pt^2 y=2pt,tΪ²ÎÊý ¹ýÔ²×¶ÇúÏßÉÏÒ»µã (x0¡¤x/a^2)+(y0¡¤y/b^2)=1 (x0,y0)µÄÇÐÏß·½³Ì y=kx¡À¡Ì[(a^2)¡¤(k^2)+b^2] y0¡¤y=p(x+x0) бÂÊΪkµÄÇÐÏß·½³Ì
y=kx¡À¡Ì[(a^2)¡¤(k^2)-b^2] y=kx+p/2k
Ïà¹ØÍÆ¼ö£º