高等数学基础形考作业1答案:
第1章 函数 第2章 极限与连续
(一)单项选择题
⒈下列各函数对中,(C)中的两个函数相等. A. f(x)?(x)2,g(x)?x B. f(x)?x2,g(x)?x
C. f(x)?lnx3,g(x)?3lnx D. f(x)?x?1,g(x)?x2?1x?1
⒉设函数f(x)的定义域为(??,??),则函数f(x)?f(?x)的图形关于(C)对称. A. 坐标原点 B. x轴 C. y轴 D. y?x ⒊下列函数中为奇函数是(B).
A. y?ln(1?x2) B. y?xcosx
C. y?ax?a?x2 D. y?ln(1?x) ⒋下列函数中为基本初等函数是(C). A. y?x?1 B. y??x
C. y?x2 D. y????1,x?0?1,x?0
⒌下列极限存计算不正确的是(D).
A. limx2x??x2?2?1 B. limx?0ln(1?x)?0 C. limsinxx??x?0 D. lim1x??xsinx?0
⒍当x?0时,变量(C)是无穷小量.
A.
sinxx B. 1x
C. xsin1x D. ln(x?2)
⒎若函数f(x)在点x0满足(A),则f(x)在点x0连续。
A. limx?xf(x)?f(x0) B. f(x)在点x00的某个邻域内有定义
C. xlim?x?f(x)?f(x0) D. lim?f(x)?lim?f(x) 0x?x0x?x0
(二)填空题
2⒈函数f(x)?x?9x?3?ln(1?x)的定义域是?3,???.
⒉已知函数f(x?1)?x2?x,则f(x)? x2
-x .
1⒊limx??(1?12x)x?e2. ?1⒋若函数f(x)???(1?x)x,x?0,在x?0处连续,则k? e .
??x?k,x?0⒌函数y???x?1,x?0sinx,x?0的间断点是x?0?.
⒍若limx?xf(x)?A,则当x?x0时,f(x)?A称为x?x0时的无穷小量。0(三)计算题
⒈设函数
f(x)???ex,x?0?x,x?0
1
求:f(?2),f(0),f(1).
解:f??2???2,f?0??0,f?1??e1?e ⒉求函数y?lgsin3xsin3x?3xsin3x3133解:lim?lim3x?lim3x?=??
x?0sin2xx?0sin2xx?0sin2x2122?2x2x2x2x?1的定义域. x?2x?1??x?0??2x?11?解:y?lg有意义,要求?解得?x?或x?0
x2?x?0????x?0? 则定义域为?x|x?0或x?x2?1⒌求lim.
x??1sin(x?1)x2?1(x?1)(x?1)x?1?1?1?lim?lim???2 解:limx??1sin(x?1)x??1sin(x?1)x??1sin(x?1)1x?1tan3x.
x?0xtan3xsin3x1sin3x11?lim?lim??3?1??3?3 解:limx?0x?0xxcos3xx?03xcos3x1⒍求lim??1?? 2?⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: D
A R O h E
B C
设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R 直角三角形AOE中,利用勾股定理得
1?x2?1⒎求lim.
x?0sinx1?x2?1(1?x2?1)(1?x2?1)x2?lim?lim解:lim2x?0x?0x?0sinx(1?x?1)sinx(1?x2?1)sinx ?limx?0
x(1?x2?1)sinxx?0?0
?1?1??1⒏求lim(x??x?1x). x?3AE?OA2?OE2?R2?h2
则上底=2AE?2R2?h2 h2R?2R2?h2?hR?R2?h2 2sin3x⒋求lim.
x?0sin2x故S?
2
????111(1?)x[(1?)?x]?1x?1xe?1xxx?x解:lim()?lim()?lim?lim?3?e?4 xx??x?3x??x??x??33e11?(1?)x[(1?)3]3xxx31?x2?6x?8⒐求lim2.
x?4x?5x?4解:limx2?6x?8?x?4??x?2?4x?4?x?4??x?1??limx?2x?4x2?5x??limx?4x?1?4?24?1?23
⒑设函数
?(x?2)2,x?1f(x)???x,?1?x?1
??x?1,x??1讨论f(x)的连续性。
解:分别对分段点x??1,x?1处讨论连续性 (1)
xlim??1?f?x??xlim??1?x??1xlim??1?f?x??xlim??1??x?1???1?1?0
所以xlim??1?f?x??xlim??1?f?x?,即f?x?在x??1处不连续(2)
xlim?1?f?x??lim?x?2?2??1?2?2x?1??1xlim?1?f?x??xlim?1?x?1
f?1??1所以limx?1?f?x??limx?1?f?x??f?1?即f?x?在x?1处连续
由(1)(2)得f?x?在除点x??1外均连续
高等数学基础作业2答案:
第3章 导数与微分
(一)单项选择题
⒈设f(0)?0且极限limf(x)x?0x存在,则limf(x)x?0x?(C). A. f(0) B. f?(0) C. f?(x) D. 0cvx
⒉设f(x)在xf(x0?2h)?f(x0)0可导,则limh?02h?(D).
A. ?2f?(x0) B. f?(x0)
C. 2f?(x0) D. ?f?(x0)
⒊设f(x)?ex,则limf(1??x)?f(1)?x?0?x?(A).
A. e B. 2e C. 12e D. 14e
⒋设f(x)?x(x?1)(x?2)?(x?99),则f?(0)?(D).
A. 99 B. ?99 C. 99! D. ?99!
⒌下列结论中正确的是(C).
A. 若f(x)在点x0有极限,则在点x0可导. B. 若f(x)在点x0连续,则在点x0可导.
C. 若f(x)在点x0可导,则在点x0有极限. D. 若f(x)在点x0有极限,则在点x0连续.
(二)填空题
? ⒈设函数f(x)???x2sin1,x?0,则f?(0)? ?x0 . ?0,x?03
⒉设f(ex)?e2x?5ex,则df(lnx)2dx?lnxx?5x。
⒊曲线f(x)?x?1在(1,2)处的切线斜率是k?1
2
。
⒋曲线f(x)?sinx在(π2,1)处的切线方程是y?1。
⒌设y?x2x,则y??2x2x(1?lnx) ⒍设y?xlnx,则y???1x。 (三)计算题
⒈求下列函数的导数y?: ⑴y?(xx?3)ex
解:y???xx?3??ex??xx?3??ex??3 ?(x2?3)ex?31x2x2e⑵y?cotx?x2lnx 解:y???cotx????x2??lnx?x2?lnx????csc2x?x?2xlnx
x2⑶y?lnx
2?2?解:y???x?lnx?x?lnx?xlnx?xln2x?2ln2x
⑷y?cosx?2xx3 x解
:
y??cx?2x???x3??ocx?2??x3??os?x3?2
?x(?sinx?2xln2)?3(cosx?2x)x4 ?lnx?x2⑸ysinx
解
:
?sinx??lnx?x2??sx??sx(1?2x)?(x?x2)cxy???lnx?x2?s2x?xs2x
⑹y?x4?sinxlnx
解:y???x4????sinx??lnx?sinx?lnx???4x3?sinxx?cosxlnx sinx?x2⑺y?3x 解
:
y???sx?x2??3x??sx?x2??3x???3??3x(cosx?2x)?(sinx?x2)3xln3x232x ⑻y?extanx?lnx
解:y???ex??tanx?ex?tanx????lnx???extanx?ex1cos2x?x 4
i⒉求下列函数的导数y?: ⑴y?ex
解:y???ex????ex??1x?12?12xex2 ⑵y?lncosx 解:y??1??sinx???sinxcosxcos??tanx ⑶y?xxx
??7??1解:y????7?x8????8x8
⑷y?sin2x
解:y??2sinx?sinx???2sinx?cosx?2sin2x⑸y?sinx2
解:y??cosx2?2x?2xcosx
⑹
y?cosex2
解:
y???sinex2?ex2????2xex2sinex2
⑺y?sinnxcosnx 解
y???sinnx??cosnx?sinnx?cosnx???nsn?1xcxcnx?nsnxsnx) i⑻
y?5sinx
解:y??5sinxln5?cosx?ln5cosx5sinx
⑼y?ecosx
解:
y??ecosx??sinx???sinxecosx
⒊在下列方程中,y?y(x)是由方程确定的函数,求y?:
⑴ycosx?e2y
解:y?cosx?ysinx?2e2yy? y??ysinxcosx?2e2y
⑵y?cosylnx
解:y??siny.y?lnx?cosy.1x y??cosyx(1?sinylnx) ⑶2xsiny?x2y
解:2xcoy.ys??2siyn?2yx?x2y?y2 y?(2xcosy?x22yxy2)?y2?2siny
y??2xy?2ysiny2xy2cosy?x2 ⑷y?x?lny
5
:
解:y??y?yy?1 y??y?1 ⑸lnx?ey?y2 解:
1x?eyy??2yy? y??1x(2y?ey) ⑹y2?1?exsiny
解:2yy??excosy.y??siny.ex y??exsiny2y?excosy ⑺ey?ex?y3
解:eyy??ex?3y2y? y??ex2ey?3y
⑻y?5x?2y
解:y??5xln5?y?2yln2 y??5xln51?2yln2 ⒋求下列函数的微分dy:(注:dy?y?dx)
⑴y?cotx?cscx 解:y???csc2x?cscxcotx dy?(?1coscos2x?xsin2x)dx ⑵y?lnxsinx 1sinx?lnxcosx1解:y??xxsinx?lnxcosxsin2x dy?sin2xdx
⑶y?sin2x
解:y??2sinxcosx dy?2sinxcosxdx ⑹y?tanex
解:y??sec2ex?ex dy?sec2ex3?exdx?ex3sec2exdx
⒌求下列函数的二阶导数: ⑴y?x
解:y??1?11?1??31?32x2 y???2????22??x??4x2
⑵y?3x
解:y??3xln3 y???ln3?3x?ln3?ln23?3x
⑶y?lnx
解:y??1x y????1x2 ⑷y?xsinx
解:y??sinx?xcosx y???cosx?cosx?x??sinx??2cosx?xsinx(四)证明题
设f(x)是可导的奇函数,试证f?(x)是偶函数. 证:因为f(x)是奇函数 所以f(?x)??f(x)
6
相关推荐: