第一范文网 - 专业文章范例文档资料分享平台

人教版九年级上册《第22章二次函数》压轴题过关测试题(含答案)

来源:用户分享 时间:2025/7/9 9:50:23 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

15.解:(1)直线y=﹣2x+3与x轴、y轴的交点坐标分别为:C(0,3),D(,0).

∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点, ∴设所求抛物线的函数关系式为 y=a(x+1)(x﹣3), 把点C(0,3)代入,得3=a(0+1)(0﹣3),解得a=﹣1.

∴所求抛物线的函数关系式为:y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.(4分) (2)①如图1,过点P作PE⊥y轴于点F,交DC于点E,

由题意,设点P的坐标为(t,﹣t2+2t+3),则点E的纵坐标为﹣t2+2t+3. 以y=﹣t2+2t+3代入y=﹣2x+3,得∴点E的坐标为(∴PE=

∴S△PCD=PE?CO. =∵a=

=

<0,且0<t<3,

=

.…(8分)

,﹣t2+2t+3), .…(6分)

∴当t=2时,△PCD的面积最大值为3.…(9分)

【解法一】②△PCD是以CD为直角边的直角三角形分两种情况:…(10分) (Ⅰ)若∠PCD=90°,如图2,过点P作PG⊥y轴于点G, 则△PGC∽△COD, ∴

,即

整理得 2t2﹣3t=0,解得 t1=,t2=0(舍去). ∴点P的坐标为(,

).…(12分)

(Ⅱ)若∠PDC=90°,如图3,过点P作PH⊥x轴于点H, 则△PHD∽△DOC, ∴

,即

,t2=).

(舍去).

整理得 4t2﹣6t﹣15=0,解得 t1=∴点P的坐标为(

综上所述,当△PCD是以CD为直角边的直角三角形时,点P的坐标为(,或(

).…(14分)

【解法二】②△PCD是以CD为直角边的直角三角形分两种情况: (Ⅰ)若∠PDC=90°,如图4,延长PD交y轴于点M, 则△DOM∽△COD, ∴

,即

).

∴OM=,即点M的坐标为(0,∴直线DM所对应的函数关系式为

∵点P的坐标为(t,﹣t2+2t+3), ∴

,t2=).…(12分)

(舍去).

整理得 4t2﹣6t﹣15=0,解得 t1=∴点P的坐标为(

(Ⅱ) 若∠PCD=90°,如图5,过D作则PC∥DM, ∴直线CP所对应的函数关系式为∵点P的坐标为(t,﹣t2+2t+3), ∴

整理得 2t2﹣3t=0,解得 t1=,t2=0(舍去). ∴点P的坐标为(,

).

综上所述,当△PCD是以CD为直角边的直角三角形时,

点P的坐标为(,)或(,).…(14分)

16.解: (1)由题意可得

,解得

∴抛物线解析式为y=﹣x2+2x+3; (2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴F(1,4),

∵C(0,3),D(2,3), ∴CD=2,且CD∥x轴, ∵A(﹣1,0),

∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4; ②∵点P在线段AB上, ∴∠DAQ不可能为直角,

∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°, i.当∠ADQ=90°时,则DQ⊥AD, ∵A(﹣1,0),D(2,3), ∴直线AD解析式为y=x+1,

∴可设直线DQ解析式为y=﹣x+b′, 把D(2,3)代入可求得b′=5, ∴直线DQ解析式为y=﹣x+5, 联立直线DQ和抛物线解析式可得∴Q(1,4);

ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),

,解得

人教版九年级上册《第22章二次函数》压轴题过关测试题(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4a07l3sppj0a0pl1szsm0n19a8hr9t00gul_13.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top