修复来说,可用一余度传感器或一估计值代替故障传感器的输出值。基于ANN在线估计器的FDIA是一有效方式。故障修复是自主系统(AS)和智能系统(AIS)的重要环节。
根据系统采用的特征描述和决策方法,故障诊断的方法概括起来分为:基于系统数学模型的故障诊断方法和基于非模型的故障诊断方法两大类。 一、基于系统数学模型的故障诊断方法
基于模型的故障检测诊断技术是通过构造观测器估计出系统输出,然后将它与输出的测量值比较,从中取得故障信息。该方法能与控制系统紧密结合,是监控、容错控制、系统修复和重构的前提;是以现代控制理论和现代优化方法为指导,以系统的数学模型为基础,利用观测器(组)、等价空间方程、滤波器、参数模型估计和辨识等方法产生残差,然后基于某种准则或阈值对该残差进行评价和决策。
二、基于非模型的故障诊断方法
(1) 基于可测信号处理的故障诊断方法:系统的输出在幅值、相位、频率及相关性上与故障源存在着某种关系,利用这种关系可确定系统的故障。
(2) 基于故障诊断专家系统的诊断方法:专家系统是近年来故障诊断领域最显著的成就之一,内容包括诊断知识的表达、诊断推理方法、不确定性推理以及诊断知识的获取等。
(3) 故障模式识别的故障诊断方法:这是一种静态故障诊断方法,它以模式识别技术为基础,其关键是故障模式特征量的选取和提取。该方法分为离线分析和在线分析2个阶段。通过离线分析来确定表达系统故障状态的特征向量集和以该特征向量集所描述的故障模式向量。
(4) 基于故障树的故障诊断方法:故障树是表示系统或设备特定事件或不希望事件与它的各子系统或各部件故障事件之间的逻辑结构图,通过结构图对系统故障形成的原因做出总体至部分按树状逐渐地详细划分。
(5) 基于模糊数学的故障诊断方法:根据模糊集合论征兆空间与故障状态空间的某种映射关系,由征兆来诊断故障。由于模糊集合论尚未成熟,通常只能凭经验和大量试验来确定。另外因系统本身不确定的和模糊的信息,以及要对每一个征兆和特征参数确定其上下限和合适的隶属度函数,而使其应用有局限性。
(6) 基于人工神经网络的故障诊断方法:是20世纪80年代末90年代初才真正具有实用性的一种故障诊断方法。由于神经网络具有原则上容错、结构拓扑鲁棒、联想、推测、记忆、自适应、自学习、并行和处理复杂模式的功能,使其在工程实际存在着大量的多故障、多过程、突发性故障、庞大复杂机器和系统的监测及诊断中发挥较大作用。
传感器的精密化、多维化;诊断理论、诊断模型的多元化;检测诊断技术趋于自动化、数字化、智能化和综合化;应用软件规范化;硬件专业化、标准化,诊断仪表与装置趋向工程网络系统发展。 具体表现在以下几方面:
(1) 研究和改进传感器与监测仪器选取合适的参量以提高诊断的准确度与当代最新传感技术融合,研究开发新型传感器和监测仪器,提高监测技术水平;选择最有效的参量是提高诊断准确性的前提,高效多功能仪器对诊断设备的几何量、物理量快速准确的检测与识别是研究故障诊断的基础工作。
(2) 与最新信号处理方法相融合,开展基于小波分析的故障诊断技术研究。小波分析是一种全新的信号-尺度分析方法,其分析基函数是一系列尺度可变的
简谐函数,具有良好的时-频定性特性以及对信号的自适应能力。机械设备故障诊断中由于设备零件结构不同,产生的信号中含有大量的非平稳成分,利用小波分析可把不同频率信号分解到不同频道的分解序列,从而为故障特征的提取而提供理论依据,由于它具有时域和频域局部化分析功能和可变分辨率的特点,使之在分析瞬变信号时比傅立叶分析更具优越性。
(3) 与非线性原理和方法及多元传感技术的融合。现代化大生产要求对设备进行全方位、多角度的监测与维护,以便对设备的运行状态有整体的、全方面的了解;在进行设备故障检测诊断时,可采用多个传感器同时对设备的各个位置进行监测,然后按照一定的方法对这些信息进行处理。
(4) 与现代智能方法的融合
现代智能技术包括专家系统、模糊逻辑、神经网络、进化计算等。现代智能方法在设备故障诊断技术中已得到了广泛的应用,随着智能科技不断发展,设备状态的智能监测和故障诊断将是故障诊断技术的最终目标。
(5) 远程化、网络化
设备故障诊断系统是针对一台或同类型的某几台设备开发的专用系统,使用效率低,故障诊断知识、技术与信息不易共享,导致其开发和维护费用过高;工程实际中诊断规则的收集不够全面,收集也困难,造成故障诊断系统中的诊断规则普遍很少,系统诊断能力低;当系统出现严重或新的故障时,无法快速、经济地利用各方技术力量解决问题。随着网络技术的发展,实现多专家与多系统的共同诊断,一种有效的解决途径就是建立基于网络的远程故障诊断与监测系统。网络化的远程设备故障诊断系统中储存了多种设备的故障诊断知识和经验,可响应不同监测现场用户的使用要求,不同的监测现场可以与同一个诊断中心建立联
系。
相关推荐: