第1课时 诱导公式二、三、四
A级 基础巩固
一、选择题
1.以下四种化简过程,其中正确的有( ) ①sin(360°+200°)=sin 200°; ②sin(180°-200°)=-sin 200°; ③sin(180°+200°)=sin 200°; ④sin(-200°)=sin 200°. A.0个 B.1个 C.2个 D.3个
解析:由诱导公式知①正确,②③④错误,故选B. 答案:B 2.已知sin?
?π+α?=3,则sin?3π-α?的值为( )
?2?4?
?4???
1133
A.- B. C. D.-
2222解析:根据三角函数的诱导公式, 可得sin?答案:C
3
3.已知sin(π+α)=,α为第三象限角,则cos(π-α)=( )
53344A. B.- C. D.- 5555
33解析:因为sin(π+α)=,所以sin α=-.
554
因为α为第三象限角,所以cos α=-.
54
所以cos(π-α)=-cos α=.
5答案:C
4.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,若f(2 017)=5,则f(2 018)等于( )
A.4 B.3 C.-5 D.5
解析:因为f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=-asin α-bcos β
1
?3π-α?=sin?π-?π+α??=sin?π+α?=3,故选C.
???4???4?2
?4???????
=5,所以f(2 018)=asin(2 018π+α)+bcos(2 018π+β)=asin α+bcos β=-5.
答案:C
5.设tan(5π+α)=m,则sin(α+3π)+cos(π+α)
sin(-α)-cos(π+α)
的值等于( )
A.
m+1
B.
m-1
m-1m+1
C.-1 D.1
解析:因为tan(5π+α)=tan[4π+(π+α)]= tan(π+α)=tan α,所以tan α=m;
所以原式=sin(π+α)-cos α--sin α+cos α=sin α-cos αtan α+1
-sin α+cos α=tan α-1
=
m+1
m-1
. 答案:A 二、填空题
6.已知tan??π?3-α??1?=?3,则tan?2π?3+α???
=________. 解析:因为tan??2π?3+α???=tan???π-??π?3-α??????=-tan??π?3-α??
?
,
所以tan?
?2π?3+α???
=-13. 答案:-1
3
7.已知sin(π+α)=4
5,且α是第四象限角,则cos(α-2π)=________.
解析:由sin(π+α)=-sin α,得sin α=-4
5.
故cos(α-2π)=cos α= 1-sin2
α=
2
1-??4?-5??3?=5
. 答案:35
8.化简sin2
(π+α)-cos(π+α)cos(-α)+1的值是________. 解析:原式=(-sin α)2
-(-cos α)·cos α+1= sin2
α+cos2
α+1=2. 答案:2 三、解答题
2
9.计算:
π2π 3π4π
(1)cos +cos +cos+cos ;
5555
(2)tan 10°+tan 170°+sin 1 866°-sin (-606°). π4π?? 2π3π?+cos ?解:(1)原式=?cos +cos ?+?cos
55??55???π???2π??π2π???=?cos +cos?π-??+?cos +cos?π-?? 5???5??55???
ππ??2π2π??=?cos -cos ?+?cos -cos ?
55??55??=0.
(2)原式=tan 10°+tan (180°-10°)+sin (5×360°+66°)-sin [(-2)×360°+114°]
=tan 10°+tan (-10°)+sin 66°-sin (180°-66°) =tan 10°-tan 10°+sin 66°-sin 66°=0. 10.计算:
π416 2
(1)sin (-)+2sin πsin π+sinπ;
3333
(2)sin 585°cos 1 290°+cos (-30°)sin 210°+tan 135°. 416 2?π?解:(1)sin ?-?+2sinπsin π+sinπ
333?3?π??4?π 2?=-sin +2sin?π+?sin?4π+π?+sinπ 3??3?33?=-
π?3π3?-2sin sin?π+?+ 3?223?
π3
=2sin2=.
32
(2)原式=sin (360°+225°)cos (3×360°+210°)+cos 30°sin (180°+30°)+tan (180°-45°)
=sin 225°cos 210°-cos 30°sin 30°-tan 45° =(-sin 45°)·(-cos 30°)-cos 30°·sin 30°-1 =
2331×-×-1 2222636-3-4--1=. 444
[B级 能力提升]
=
3
2?ππ?1.若sin (-α)=,且α∈?-,?,则cos (π+α)的值为( ) 3?22?A.5
35 3
B.-5 3
C.±D.以上都不对
2
解析:因为sin (-α)=,
32
所以sin α=-.
3
?ππ?又α∈?-,?, ?22?
所以cos α=1-sin2α=
5. 3
5. 3
所以cos (π+α)=-cos α=-答案:B
??sin πx(x<0),?11??11?2.已知f(x)=?则f?-?+f??=________.
?6??6??f(x-1)-1(x>0),?
π1?11??5??11??11??1??π?解析:f?-?=sin?-π?=sin =,f??=f??-1=f?-?-2=sin?-?-
62?6??6??6??6??6??6?5
2=-,
2
?11??11?15
所以f?-?+f??=-=-2.
?6??6?22
答案:-2
?37π?·tan 13π-cos 7π·tan?-41π?的值.
3.求3sin?-???6?4?63???37π?·tan 13π-cos 7π·tan?-41π? 解:3sin?-???6?4?63??
π?π???π??????π??=3sin?-6π+?-??·tan?2π+?-cos ?2π+?·tan?-10π+?-??
6?3???6??????4??
?π?tan π-cos π·tan?-π?=-3sin π·tan π+cos π·tan π
=3sin?-?·?4?636634?6???
131
=-3××+×1=0.
232
4
相关推荐: