第一范文网 - 专业文章范例文档资料分享平台

2018最新人教版九年级下册数学全册教案教学设计(新教材)

来源:用户分享 时间:2025/8/10 21:09:46 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

教 学 反 思

新授教学时间 知 识 和 能 力 教 学 目 标 过 程 和 方 法 情 感 态 度 让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。 课题 26.1 二次函数(4) 课型 课 1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。 价值观 会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=教学重点 a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系 理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的教学难点 图象与二次函数y=ax2的图象的相互关系 教学准备 教师 多媒体课件 学生 “五个一” 设计意图 课 堂 教 学 程 序 设 计 一、提出问题 12121.在同一直角坐标系内,画出二次函数y=-x,y=-x-221的图象,并回答: (1)两条抛物线的位置关系。 (2)分别说出它们的对称轴、开口方向和顶点坐标。 (3)说出它们所具有的公共性质。 2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系? 二、分析问题,解决问题 问题1:你将用什么方法来研究上面提出的问题? (画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察) 问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗? 教学要点 1.让学生完成列表。 2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。 问题3:现在你能回答前面提出的问题吗? 教学要点 1.教师引导学生观察画出的两个函数图象. 根据所画出的图象,完成以下填空: 开口方对称顶点坐向 y=2x2 轴 标 y=2(x -1)2 2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。 问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗? 教学要点 1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图象; 2.让学生完成以下填空: 当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。 三、做一做 问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗? 教学要点 1.在学生画函数图象的同时,教师巡视、指导; 2.请两位同学上台板演,教师讲评; 3.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。 问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗? 教学要点 让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。

2018最新人教版九年级下册数学全册教案教学设计(新教材).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4j3go6qmml2wkqq4mj6h371qz5d0jm00kkf_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top