ÔÚRÉϵĽâÎöʽΪ 9.ÇóÏÂÁк¯ÊýµÄµ¥µ÷Çø¼ä£º ¢Å(2)
10.ÅжϺ¯ÊýµÄµ¥µ÷ÐÔ²¢Ö¤Ã÷ÄãµÄ½áÂÛ. 11.É躯ÊýÅжÏËüµÄÆæÅ¼ÐÔ²¢ÇÒÇóÖ¤ ¸ßÒ»Êýѧ֪ʶµã3
1¡¢º¬n¸öÔªËØµÄÓÐÏÞ¼¯ºÏÆä×Ó¼¯¹²ÓÐ2n¸ö£¬·Ç¿Õ×Ó¼¯ÓÐ2n¡ª1¸ö£¬·Ç¿ÕÕæ×Ó¼¯ÓÐ2n¡ª2¸ö¡£
2¡¢¼¯ºÏÖУ¬Cu(A¡ÉB)=(CuA)U(CuB),½»Ö®²¹µÈÓÚ²¹Ö®²¢¡£Cu(AUB)=(CuA)¡É(CuB)£¬²¢Ö®²¹µÈÓÚ²¹Ö®½»¡£
3¡¢ax2+bx+c<0µÄ½â¼¯Îªx(0
+c>0µÄ½â¼¯Îªx£¬cx2+bx+a>0µÄ½â¼¯Îª>x»òx<;ax2¡ªbx+ 4¡¢c<0µÄ½â¼¯Îªx£¬cx2¡ªbx+a>0µÄ½â¼¯Îª->x»òx<-¡£
5¡¢ÔÃüÌâÓëÆäÄæ·ñÃüÌâÊǵȼÛÃüÌâ¡£ÔÃüÌâµÄÄæÃüÌâÓëÔÃüÌâµÄ·ñÃüÌâÒ²ÊǵȼÛÃüÌâ¡£
6¡¢º¯ÊýÊÇÒ»ÖÖÌØÊâµÄÓ³É䣬º¯ÊýÓëÓ³Éä¶¼¿ÉÓãºf:A¡úB±íʾ¡£A±íʾÔÏñ£¬B±íʾÏñ¡£µ±f:A¡úB±íʾº¯Êýʱ£¬A±íʾ¶¨ÒåÓò£¬B´óÓÚ»òµÈÓÚÆäÖµÓò·¶Î§¡£Ö»ÓÐÒ»Ò»Ó³ÉäµÄº¯Êý²Å¾ßÓз´º¯Êý¡£
7¡¢Ôº¯ÊýÓë·´º¯ÊýµÄµ¥µ÷ÐÔÒ»Ö£¬ÇÒ¶¼ÎªÆæº¯Êý¡£Å¼º¯ÊýºÍÖÜÆÚº¯ÊýûÓз´º¯Êý¡£Èôf(x)Óëg(x)¹ØÓÚµã(a,b)¶Ô³Æ£¬Ôòg(x)=2b-f(2a-x).
8¡¢Èôf(-x)=f(x)£¬Ôòf(x)Ϊżº¯Êý£¬Èôf(-x)=f(x)£¬Ôòf(x)ÎªÆæº¯Êý;żº¯Êý¹ØÓÚyÖá¶Ô³Æ£¬ÇÒ¶Ô³ÆÖáÁ½±ßµÄµ¥µ÷ÐÔÏà·´;Ææº¯Êý¹ØÓÚÔµã¶Ô³Æ£¬ÇÒÔÚ
Õû¸ö¶¨ÒåÓòÉϵĵ¥µ÷ÐÔÒ»Ö¡£·´Ö®ÒàÈ»¡£ÈôÆæº¯ÊýÔÚx=0´¦ÓÐÒâÒ壬Ôòf(0)=0¡£º¯ÊýµÄµ¥µ÷ÐÔ¿ÉÓö¨Òå·¨ºÍµ¼Êý·¨Çó³ö¡£Å¼º¯ÊýµÄµ¼º¯ÊýÊÇÆæº¯Êý£¬Ææº¯ÊýµÄµ¼º¯ÊýÊÇżº¯Êý¡£¶ÔÓÚÈÎÒâ³£ÊýT(T¡Ù0)£¬ÔÚ¶¨ÒåÓò·¶Î§ÄÚ£¬¶¼ÓÐf(x+T)=f(x)£¬Ôò³Æf(x)ÊÇÖÜÆÚΪTµÄÖÜÆÚº¯Êý£¬ÇÒf(x+kT)=f(x),k¡Ù0.
9¡¢ÖÜÆÚº¯ÊýµÄÌØÕ÷ÐÔ£º¢Ùf(x+a)=-f(x),ÊÇT=2aµÄº¯Êý£¬¢ÚÈôf(x+a)+f(x+b)=0,¼´f(x+a)=-f(x+b),T=2(b-a)µÄº¯Êý,¢ÛÈôf(x)¼Èx=a¹Ø¶Ô³Æ,ÓÖ¹ØÓÚx=b¶Ô³Æ,Ôòf(x)ÊÇT=2(b-a)µÄº¯Êý¢ÜÈôf(x
+a)?f(x+b)=¡À1,¼´f(x+a)=¡À£¬Ôòf(x)ÊÇT=2(b-a)µÄº¯Êý¢Ýf(x+a)=¡À,Ôòf(x)
ÊÇT=4(b-a)µÄº¯Êý
10¡¢¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔÂú×㡰ͬÔöÒì¼õ¡±ÔÀí¡£¶¨ÒåÓò¶¼ÊÇÖ¸º¯ÊýÖÐ×Ô±äÁ¿µÄȡֵ·¶Î§¡£
11¡¢³éÏóº¯ÊýÖ÷ÒªÓÐf(xy)=f(x)+f(y)(¶ÔÊýÐÍ)£¬f(x+y)=f(x)?f(y)(Ö¸ÊýÐÍ)£¬f(x+y)=f(x)+f(y)(Ö±ÏßÐÍ)¡£½â´ËÀà³éÏóº¯Êý±È½ÏʵÓõķ½·¨ÊÇÌØÊâÖµ·¨ºÍÖÜÆÚ·¨¡£
12¡¢Ö¸Êýº¯ÊýͼÏñµÄ¹æÂÉÊÇ£ºµ×Êý°´ÄæÊ±ÕëÔö´ó¡£¶ÔÊýº¯ÊýÓëÖ®Ïà·´. 13¡¢ar?as=ar+s,ar¡Âas=ar¡ªs,(ar)s=ars,(ab)r=arbr¡£ÔÚ½â¿É»¯Îªa2x+Bax+C=0»òa2x+Bax+C¡Ý0(¡Ü0)µÄÖ¸Êý·½³Ì»ò²»µÈʽʱ£¬³£½èÖúÓÚ»»Ôª·¨£¬Ó¦Ìرð×¢Òâ»»ÔªºóбäÔªµÄȡֵ·¶Î§¡£
14¡¢log10N=lgN;logeN=lnN(e=2.718???);¶ÔÊýµÄÐÔÖÊ£ºÈç¹ûa>0,a¡Ù0,M>0N>0,
ÄÇ
ô
loga(MN)=logaM+logaN,;loga()=logaM¡ªlogaN;logaMn=nlogaM;alogaN=N.
»»µ×¹«Ê½£ºlogaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk. 15¡¢º¯ÊýͼÏñµÄ±ä»»£º
(1)Ë®Æ½Æ½ÒÆ£ºy=f(x¡Àa)(a>0)µÄͼÏñ¿ÉÓÉy=f(x)Ïò×ó»òÏòÓÒÆ½ÒÆa¸öµ¥Î»µÃµ½;
(2)ÊúÖ±Æ½ÒÆ£ºy=f(x)¡Àb(b>0)ͼÏñ£¬¿ÉÓÉy=f(x)ÏòÉÏ»òÏòÏÂÆ½ÒÆb¸öµ¥Î»µÃµ½;
(3)¶Ô³Æ£ºÈô¶ÔÓÚ¶¨ÒåÓòÄÚµÄÒ»ÇÐx¾ùÓÐf(x+m)=f(x¡ªm),Ôòy=f(x)µÄͼÏñ¹ØÓÚÖ±Ïßx=m¶Ô³Æ;y=f(x)¹ØÓÚ(a,b)¶Ô³ÆµÄº¯ÊýΪy!=2b¡ªf(2a¡ªx).
(4),ѧϰ¼Æ»®;·ÕÛ£º¢Ùy=|f(x)|Êǽ«y=f(x)λÓÚxÖáÏ·½µÄ²¿·ÖÒÔxÖáΪ¶Ô³ÆÖὫÆÚ·ÕÛµ½xÖáÉÏ·½µÄͼÏñ¡£¢Úy=f(|x|)Êǽ«y=f(x)λÓÚyÖá×ó·½µÄͼÏñ·ÕÛµ½yÖáµÄÓÒ·½¶ø³ÉµÄͼÏñ¡£
(5)ÓйؽáÂÛ£º¢ÙÈôf(a+x)=f(b¡ªx),ÔÚxΪһÇÐʵÊýÉϳÉÁ¢£¬Ôòy=f(x)µÄͼÏñ¹ØÓÚ
x=¶Ô³Æ¡£¢Úº¯Êýy=f(a+x)Ó뺯Êýy=f(b¡ªx)µÄͼÏñÓйØÓÚÖ±Ïßx=¶Ô³Æ¡£ 15¡¢µÈ²îÊýÁÐÖУ¬an=a1+(n¡ª1)d=am+(n¡ªm)d;sn=n=na1+
16¡¢Èôn+m=p+q,Ôòam+an=ap+aq;sk,s2k¡ªk,s3k¡ª2k³ÉÒÔk2dΪ¹«²îµÄµÈ²îÊýÁС£anÊǵȲîÊýÁУ¬Èôap=q,aq=p,Ôòap+q=0;Èôsp=q,sq=p,Ôòsp+q=¡ª(p+q);ÈôÒÑÖªsk,sn,sn¡ªk,sn=(sk+sn+sn¡ªk)/2k;ÈôanÊǵȲîÊýÁУ¬Ôò¿ÉÉèǰnÏîºÍΪsn=an2+bn(×¢£ºÃ»Óг£ÊýÏî),Ó÷½³ÌµÄ˼ÏëÇó½âa,b¡£ÔڵȲîÊýÁÐÖУ¬Èô½«Æä½ÅÂë³ÉµÈ²îÊýÁеÄÏîÈ¡³ö×é³ÉÊýÁУ¬ÔòеÄÊýÁÐÈÔ¾ÉÊǵȲîÊýÁС£
17¡¢µÈ±ÈÊýÁÐÖУ¬an=a1?qn-1=am?qn-m,Èô
n+m=p+q,Ôò
am?an=ap?aq;sn=na1(q=1),
sn=,(q¡Ù1);Èôq¡Ù1£¬ÔòÓÐ=q£¬Èôq¡Ù¡ª1£¬=q;
sk,s2k¡ªk,s3k¡ª2kÒ²ÊǵȱÈÊýÁС£a1+a2+a3£¬a2+a3+a4£¬a3+a4+a5Ò²³ÉµÈ±ÈÊýÁС£ÔڵȱÈÊýÁÐÖУ¬Èô½«Æä½ÅÂë³ÉµÈ²îÊýÁеÄÏîÈ¡³ö×é³ÉÊýÁУ¬ÔòеÄÊýÁÐÈÔ¾ÉÊǵȱÈÊýÁС£ÁÑÏʽ£º
=¡ª,=?(¡ª),³£ÓÃÊýÁеÝÍÆÐÎʽ£ºµþ¼Ó£¬µþ³Ë£¬
18¡¢»¡³¤¹«Ê½£ºl=|¦Á|?r¡£sÉÈ=?lr=?|¦Á|r2=?;µ±Ò»¸öÉÈÐεÄÖܳ¤Ò»¶¨Ê±(ΪLʱ)£¬
ÆäÃæ»ýΪ£¬ÆäÔ²ÐĽÇΪ2»¡¶È¡£ 19
¡¢
Sina(¦Á+¦Â)=sin¦Ácos¦Â+cos¦Ásin¦Â;Sina(¦Á¡ª¦Â)=sin¦Ácos¦Â¡ªcos¦Ásin¦Â;
Cos(¦Á+¦Â)=cos¦Ácos¦Â¡ªsin¦Ásin¦Â;cos(¦Á¡ª¦Â)=cos¦Ácos¦Â+sin¦Ásin¦Â
¸ßÒ»Êýѧ֪ʶµã4 1.º¯ÊýµÄÆæÅ¼ÐÔ
(1)Èôf(x)ÊÇżº¯Êý£¬ÄÇôf(x)=f(-x);
(2)Èôf(x)ÊÇÆæº¯Êý£¬0ÔÚÆä¶¨ÒåÓòÄÚ£¬Ôòf(0)=0(¿ÉÓÃÓÚÇó²ÎÊý); (3)ÅжϺ¯ÊýÆæÅ¼ÐÔ¿ÉÓö¨ÒåµÄµÈ¼ÛÐÎʽ£ºf(x)¡Àf(-x)=0»ò(f(x)¡Ù0); (4)ÈôËù¸øº¯ÊýµÄ½âÎöʽ½ÏΪ¸´ÔÓ£¬Ó¦ÏÈ»¯¼ò£¬ÔÙÅÐ¶ÏÆäÆæÅ¼ÐÔ;
(5)Ææº¯ÊýÔڶԳƵĵ¥µ÷Çø¼äÄÚÓÐÏàͬµÄµ¥µ÷ÐÔ;żº¯ÊýÔڶԳƵĵ¥µ÷Çø¼äÄÚÓÐÏà·´µÄµ¥µ÷ÐÔ;
2.¸´ºÏº¯ÊýµÄÓйØÎÊÌâ
(1)¸´ºÏº¯Êý¶¨ÒåÓòÇ󷨣ºÈôÒÑÖªµÄ¶¨ÒåÓòΪ[a£¬b],Æä¸´ºÏº¯Êýf[g(x)]µÄ¶¨ÒåÓòÓɲ»µÈʽa¡Üg(x)¡Üb½â³ö¼´¿É;ÈôÒÑÖªf[g(x)]µÄ¶¨ÒåÓòΪ[a,b],Çóf(x)µÄ¶¨ÒåÓò£¬Ï൱ÓÚx¡Ê[a,b]ʱ£¬Çóg(x)µÄÖµÓò(¼´f(x)µÄ¶¨ÒåÓò);Ñо¿º¯ÊýµÄÎÊÌâÒ»¶¨Òª×¢ÒⶨÒåÓòÓÅÏȵÄÔÔò¡£
(2)¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔÓÉ¡°Í¬ÔöÒì¼õ¡±Åж¨; 3.º¯ÊýͼÏñ(»ò·½³ÌÇúÏߵĶԳÆÐÔ)
(1)Ö¤Ã÷º¯ÊýͼÏñµÄ¶Ô³ÆÐÔ£¬¼´Ö¤Ã÷ͼÏñÉÏÈÎÒâµã¹ØÓÚ¶Ô³ÆÖÐÐÄ(¶Ô³ÆÖá)µÄ¶Ô³ÆµãÈÔÔÚͼÏñÉÏ;
(2)Ö¤Ã÷ͼÏñC1ÓëC2µÄ¶Ô³ÆÐÔ£¬¼´Ö¤Ã÷C1ÉÏÈÎÒâµã¹ØÓÚ¶Ô³ÆÖÐÐÄ(¶Ô³ÆÖá)µÄ¶Ô³ÆµãÈÔÔÚC2ÉÏ£¬·´Ö®ÒàÈ»;
(3)ÇúÏßC1£ºf(x,y)=0,¹ØÓÚy=x+a(y=-x+a)µÄ¶Ô³ÆÇúÏßC2µÄ·½³ÌΪf(y-a,x+a)=0(»òf(-y+a,-x+a)=0);
(4)ÇúÏßC1:f(x,y)=0¹ØÓÚµã(a,b)µÄ¶Ô³ÆÇúÏßC2·½³ÌΪ£ºf(2a-x,2b-y)=0; (5)Èôº¯Êýy=f(x)¶Ôx¡ÊRʱ£¬f(a+x)=f(a-x)ºã³ÉÁ¢£¬Ôòy=f(x)ͼÏñ¹ØÓÚÖ±Ïßx=a¶Ô³Æ;
(6)º¯Êýy=f(x-a)Óëy=f(b-x)µÄͼÏñ¹ØÓÚÖ±Ïßx=¶Ô³Æ; 4.º¯ÊýµÄÖÜÆÚÐÔ
(1)y=f(x)¶Ôx¡ÊRʱ£¬f(x+a)=f(x-a)»òf(x-2a)=f(x)(a>0)ºã³ÉÁ¢,Ôòy=f(x)ÊÇÖÜÆÚΪ2aµÄÖÜÆÚº¯Êý;
(2)Èôy=f(x)ÊÇżº¯Êý£¬ÆäͼÏñÓÖ¹ØÓÚÖ±Ïßx=a¶Ô³Æ£¬Ôòf(x)ÊÇÖÜÆÚΪ2¦òa¦òµÄÖÜÆÚº¯Êý;
Ïà¹ØÍÆ¼ö£º