rrr2r2rra?b?a?b?2a?b?42?82?2?(?16)?43.
rrrrrrrrr2r2rr(2)因为(a?2b)?(ka?b),所以(a?2b)?(ka?b)?ka?2b?(2k?1)a?b?0,
整理得16k?128?(2k?1)?(?16)?0,解得k??7.
即当k??7值时,(ar?2rb)?(kar?rb).
18.(1)1534;(2)53 详解:(1)在?ADC中,由余弦定理得
cos?ADC?AD2?DC2?AC252?32?7212AD?DC?2?5?3??2,
∵?ADC为三角形的内角,
??ADC?120?, ?sin?ADC?32, ?S?2AD?DC?sin?ADC?13153ADC?12?5?3?2?4.(2)在?ABD中,?ADB?60?, 由正弦定理得:
ABsin?ADB?ADsinB
AB?5∴
1?32?53. 219.40m.
试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴在Rt△ABC中,∠ACB=45°,∴BC=AB. 在△BCD中,由余弦定理,得 BD2=BC2+CD2-2BC·CDcos∠BCD,
6
BD=3AB, ∴3AB2=AB2+CD2-2AB·CDcos120° 整理得AB2-20AB-800=0, 解得,AB=40或AB=-20(舍). 即电视塔的高度为40 m
20.(1)见解析;(2)an?【详解】
2 n?1?1?证明:Qa1?0,且有an?1?a?an?0n?N*,
2an, ?2n??又Qbn?1, ana?211111?n???bn?,即bn?1?bn?1n?N*,且b1??1, an?12anan22a12?bn?1?????bn?是首项为1,公差为
1的等差数列. 21n?2?解:由?1?知bn?b1??n?1??1?1?n?1?n?1,即a222?n?1, 2所以an?
2. n?121.(1)(2)3?3
3【详解】
?rr解:(1)由m//n得,(2c?b)cosA?acosB?0, 由正弦定理可得,(2sinC?sinB)cosA?sinAcosB?0,
7
可得:2sinCcosA?sin(A?B)?0,即:2sinCcosA?sinC?0, 由sinC?0,可得:cosA?又A?(0,?), 可得:A?1, 2?3.
(2)由已知及余弦定理得b+c=3
?ABC的周长为3?3. 22.(1)an?2n?1;(2)见解析 【详解】
2a1?d?8,?(1)设公差为d,由题?解得a1?3,d?2.
?2a1?9d?2a1?8d?2,所以an?2n?1.
(2) 由(1),an?2n?1,则有Sn?n?3?2n?1??n2?2n. 2111?11????则??. Snn?n?2?2?nn?2?所以Tn ?1??1??11??11?1??11???11??????L??????????????? 2?32435n?1n?1nn?2?????????????1?111?31????? ?. 2?2n?1n?2?4
8
相关推荐: