高考数学专题复习练习题10---等差数列与等比数列(理)
1.在等差数列?an?中,若a2?4,a4?2,则a6?( ) A.?1
B.0
C.1
D.6
一、选择题
2.设Sn是等差数列{an}的前n项和,a1?2,a5?3a3,则S9?( ) A.?72
B.?54
C.54
D.72
3.正项等比数列?an?的公比为2,若a2a10?16,则a9的值是( ) A.8
B.16
C.32
D.64
4.三个实数成等差数列,首项是9,若将第二项加2,第三项加20可使得这三个数依次构成等比数列
?an?(n?1,2,3),则a3的所有取值中的最小值是( )
A.1
B.4
C.36
D.49
5.在正项等比数列?an?中,lga3?lga6?lga9?6,则a1a11的值是( ) A.10000
B.1000
C.100
D.10
6.在等差数列?an?中,若a4?a6?a8?a10?a12?120,则2a10?a12的值为( ) A.20
B.22
C.24
D.28
7.已知数列?an?是等差数列,且a1?a4?a7?2π,则tan(a3?a5)的值为( ) A.3 B.?3 C.
3 3D.?3 38.已知数列{an}满足3an?1?an?0,a2??A.?6(1?3?104,则{an}的前10项和等于( ) 3C.3(1?3?10) B.(1?310)
19) D.3(1?3?10)
9.已知数列{an}为等比数列,若a4?a6?10,则a1a7?2a3a7?a3a9的值为( ) A.10
B.20
C.60
D.100
10.已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则( )
A.a1d?0,dS4?0 C.a1d?0,dS4?0
B.a1d?0,dS4?0 D.a1d?0,dS4?0
*11.设数列{an}的前n项和为Sn,若a1?1,an?1?3Sn(n?N),则S6?( )
A.44 B.45 C.(46?1)
13D.(45?1)
1312.数列?an?前n项和为Sn,已知a1?恒成立,则实数a的最小值为( ) A.
1,且对任意正整数m、n,都有am?n?am?an,若Sn?a 33 21 2B.
2 3C.D.2
二、填空题
13.在等差数列?an?中,已知a3?a8?10,则3a5?a7? . 14.等差数列?an?中,若a1?a2?4,a9?a10?36,则S10? .
15.已知?an?是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1?a2?1,则a5? . 16.已知数列{an}是递增的等比数列,a1?a4?9,a2a3?8,则数列{an}的前n项和等于 .
答 案 与 解 析
一、选择题
1.【答案】B
【解析】由已知a4?a2?2d?2,解得d??1,所以a6?a4?2d?0. 2.【答案】B
【解析】设等差数列{an}的公差为d,由于a5?3a3,即a1?4d?3(a1?2d)?d??a1??2, 所以S9?9a1?3.【答案】C
【解析】因为?an?是正项等比数列,且a2a10?16,所以a6?4.【答案】A
【解析】设这三个实数分别为9,9?d,9?2d(其中d为公差),
又9,11?d,29?2d成等比数列,则(11?d)2?9(29?2d),解得d??14或10, 当d??14时,数列?an?的三项依次是9,?3,1; 当d?10时,数列?an?的三项依次为9,21,49, 故a3的所有可能取值中最小的是1. 5.【答案】A
3【解析】因为?an?为等比数列且各项都为正数,则有lga3?lga6?lga9?lga6?3lga6?6,
9?8d?9?2?36?(?2)??54. 2a2a10?4,则a9?a6q3?4?23?32.
22所以a6?10,则有a1a11?a6?10000.
6.【答案】C
【解析】由等差数列性质知a4?a6?a8?a10?a12?5a8?120,故a8?24, 从而2a10?a12?2(a1?9d)?(a1?11d)?a1?7d?a8?24. 7.【答案】A
【解析】a1?a4?a7?2π,所以3a4?2π,a4?2π4π,a3?a5?2a4?, 33tan(a3?a5)?tan8.【答案】C
4π?3. 31313【解析】∵3an?1?an?0,∴an?1??an,∴数列?an?是以?为公比的等比数列,
14[1?(?)10]43∵a2??,∴a1?4,∴S10??3(1?3?10).
131?39.【答案】D
22【解析】因为{an}是等比数列,故有a1a7?a4,a3a9?a6, 222所以a1a7?2a3a7?a3a9?a4?2a4a6?a6?(a4?a6)?100.
10.【答案】B
【解析】∵等差数列{an},由已知a3,a4,a8成等比数列, ∴(a1?3d)2?(a1?2d)(a1?7d)?a1??d, ∴S4?2(a1?a4)?2(a1?a1?3d)??11.【答案】B
【解析】由an?1?3Sn,得Sn?1?Sn?3Sn,即Sn?1?4Sn,
55又S1?a1?1,∴所以数列{Sn}是首项为1公比为4的等比数列,S6?1?4?4.
53522d,∴a1d??d2?0,dS4??d2?0,
33312.【答案】A
【解析】已知对任意正整数m、n,都有am?n?am?an,取m?1,则有an?1?an?a1?an?11?a1?, an311(1?n)113?1(1?1)?1, 故数列?an?是以为首项,以为公比的等比数列,则Sn?3n1332321?311由于Sn?a对任意n?N*恒成立,故a?,即实数a的最小值为.
22
二、填空题
【答案】20 13.
【解析】依题意a3?a8?2a1?9d?10,所以3a5?a7?3?a1?4d??a1?6d?4a1?18d?20. 14.【答案】100
【解析】根据等差数列的性质,把两条件式相加得40?a1?a2?a9?a10?2(a1?a10),
10(a1?a10)?5?20?100.
21015.【答案】?
3S10?【解析】由已知可得,(a1?2d)?(a1?d)(a1?6d),故有3a1?2d?0, 又因为2a1?a2?1,即3a1?d?1,所以a1?16.【答案】2?1
n22210,d??1,所以a5??4?(?1)??. 333
相关推荐: