前言
因能力有限,资源有限,现粗略整理了《工程数学 线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。
第一章 行列式
1.利用对角线法则计算下列三阶行列式:
201abc111xyx?yx?yx. (1)1?4?1; (2)bca; (3)abc; (4)y222?183cababcx?yxy201解 (1)1?4?1?2?(?4)?3?0?(?1)?(?1)?1?1?8?0?1?3?2?(?1)?8?1?(?4)?(?1)
?183=?24?8?16?4=?4
abc(2)bca?acb?bac?cba?bbb?aaa?ccc?3abc?a3?b3?c3
cab
111(3)abc?bc2?ca2?ab2?ac2?ba2?cb2?(a?b)(b?c)(c?a)
a2b2c2
xyx?yx?yx?x(x?y)y?yx(x?y)?(x?y)yx?y3?(x?y)3?x3 (4)yx?yxy?3xy(x?y)?y3?3x2y?3y2x?x3?y3?x3 ??2(x3?y3)
2.按自然数从小到大为标准次序,求下列各排列的逆序数:
word文档 可自由复制编辑
(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … (2n?1) 2 4 … (2n); (6)1 3 … (2n?1) (2n) (2n?2) … 2. 解(1)逆序数为0
(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为
n(n?1)2: 3 2 15 2,5 4 27 2,7 4,7 6 3……………… (2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1)(6)逆序数为n(n?1)
3 2 15 2,5 4 2……………… (2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1)4 2 16 2,6 4 2……………… (2n) 2,(2n) 4,(2n) 6,…,(2n) (2n?2)
3.写出四阶行列式中含有因子a11a23的项.
word文档 可自由复制编辑
(2n?2)(2n?2)
个 个 个 …
(n?1)个
个 个 …
(n?1)个
个 个 …
(n?1)个
解 由定义知,四阶行列式的一般项为(?1)ta1p1a2p2a3p3a4p4,其中t为p1p2p3p4的逆序数.
由于p1?1,p2?3已固定,p1p2p3p4只能形如13□□,即1324或1342.对应的t分别为
0?0?1?0?1或0?0?0?2?2
??a11a23a32a44和a11a23a34a42为所求.
4.计算下列各行列式:
?4?1(1)??10??0解
125120214??21?3?12??; (2)?0??127????5042361??a?abacae????11????; (3)bd?cdde; (4)?2????0bfcf?ef??2????01b?1001c?10?0?? 1?d??41(1)
10012512021442c2?c310c4?7c31070?12302?104?1?104?110022?(?1)4?3=12?2 =122?14103?141031410991000?2=0 1c1?2c3171714c2?c3
23(2)
15
1?120423611c4?c22223151?120423602r4?r20223121?121423402r4?r1 0023101?120423002=0 00?abacae?bce?111(3)bd?cdde=adfb?ce=adfbce1?11=4abcdef
bfcf?efbc?e11?1
a?1(4)
001b?1001c?1001?ab0r1?ar2?1b10?1d00a1c?101?aba00c1 =(?1)(?1)2?1?110?1ddword文档 可自由复制编辑
c3?dc21?abaad1?abad?1c1?cd=(?1)(?1)3?2=abcd?ab?cd?ad?1
?11?cd0?10
ax?byay?bzaz?bxxyza2abb2335.证明: (1)2aa?b2b=(a?b)3; (2)ay?bzaz?bxax?by=(a?b)yzx;
az?bxax?byay?bzzxy111a2b2(3)2cd2(a?1)2(b?1)2(c?1)2(d?1)2(a?2)2(b?2)2(c?2)2(d?2)2(a?3)2(b?3)2?0;
(c?3)2(d?3)21111abcd(4)2?(a?b)(a?c)(a?d)(b?c)(b?d)?(c?d)(a?b?c?d);
ab2c2d2a4b4c4d4x?100x?1(5)???000anan?1an?2 证明
?????0000???xn?a1xn?1???an?1x?an. x?1a2x?a1a2ab?a2b2?a22c2?c1ab?ab2?a23?1ab?a(1)左边? ?(b?a)(b?a)2ab?a2b?2a?(?1)12b?a2b?2ac3?c1100?(a?b)3?右边
xay?bzaz?bxyay?bzaz?bx按第一列ayaz?bxax?by ?bzaz?bxax?by (2)左边分开zax?byay?bzxax?byay?bz分别再分xay?bzzyzaz?bxxyzyzx分别再分a2yaz?bxx?0?0?bzxax?bya3yzx?b3zxy zax?byyxyay?bzzxyxyzword文档 可自由复制编辑
xyzxyz?a3yzx?b3yzx(?1)2?右边
zxyzxya2b2(3) 左边?2cd2a2b2c2d2?(2a?1)?(2b?1)?(2c?1)?(2d?1)abcd4a?44b?44c?44d?4abcd4444(a?2)2(b?2)2(c?2)2(d?2)2(a?3)2(b?3)2c2?c1(c?3)2c3?c1(d?3)2c4?c111114a?44b?44c?44d?46a6b?0 6c6da2b2c2d22a?12b?12c?12d?14a?44b?44c?44d?46a?96b?9 6c?96d?9a2按第二列b22分成二项c2d26a?9a26b?9b2?6c?9c26d?9d29a29b2?9c29d211114a4b4c4d6a?96b?9 6c?96d?9c3?4c2a2第一项c4?6c2b2c3?4c2c2第二项c4?9c2d21000b?ac?ad?aab?ac?ad?a2222b?ac?ad2?a2 (4) 左边?2222222=ab?ac?ad?ab2(b2?a2)c2(c2?a2)d2(d2?a2)4444444ab?ac?ad?a111c?ad?a =(b?a)(c?a)(d?a)b?ab2(b?a)c2(c?a)d2(d?a)100=(b?a)(c?a)(d?a)?b?a c?bd?bb2(b?a)c2(c?a)?b2(b?a)d2(d?a)?b2(b?a)=(b?a)(c?a)(d?a)(c?b)(d?b)?11
(c2?bc?b2)?a(c?b)(d2?bd?b2)?a(d?b)=(a?b)(a?c)(a?d)(b?c)(b?d)(c?d)(a?b?c?d)
(5) 用数学归纳法证明
当n?2时,D2?x?1?x2?a1x?a2,命题成立.
a2x?a1假设对于(n?1)阶行列式命题成立,即 Dn?1?xn?1?a1xn?2???an?2x?an?1,
word文档 可自由复制编辑
相关推荐: