1.计算a???693??275?与b???241?468?的数组乘积
???>> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8]; >> a.*b ans =
12 36 3 8 42 40
?2.对于AX?B,如果A??492??37??764???,B???26?,求解X。 ?357?????28??>> A=[4 9 2;7 6 4;3 5 7]; >> B=[37 26 28]’; >> X=A\\B X = -0.5118 4.0427 1.3318 3.a???125?,?36?4??b???8?74??362?,观察a与b之间的
?六种关系运算的结果 >> a=[1 2 3;4 5 6]; >> b=[8 –7 4;3 6 2]; >> a>b ans =
0 1 0 1 0 1 >> a>=b ans =
0 1 0 1 0 1 >> a
1 0 1 0 1 0 >> a<=b ans =
1 0 1 0 1 0 >> a==b ans =
0 0 0 0 0 0 >> a~=b ans =
1 1 1 1 1 1
4计算多项式乘法(x2+2x+2)(x2+5x+4) >> c=conv([1 2 2],[1 5 4]) c =
1 7 16 18 8 5计算多项式除法(3x3+13x2+6x+8)/(x+4) >> d=deconv([3 13 6 8],[1 4]) d =
3 1 2 6求欠定方程组??2474??9356??x???8??5?的最小范数解 ? >> a=[2 4 7 4;9 3 5 6]; >> b=[8 5]'; >> x=pinv(a)*b x = -0.2151 0.4459 0.7949 0.2707
7用符号函数法求解方程at2+b*t+c=0 >> r=solve('a*t^2+b*t+c=0','t') r =
[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))] 8求矩阵A???a11a12??a21a?的行列式值、逆和特征根 22? >> syms a11 a12 a21 a22; >> A=[a11,a12;a21,a22]
>> AD=det(A) % 行列式 >> AI=inv(A) % 逆 >> AE=eig(A) % 特征值 A = [ a11, a12] [ a21, a22] AD =
a11*a22-a12*a21 AI =
[ -a22/(-a11*a22+a12*a21), a12/(-a11*a22+a12*a21)] [ a21/(-a11*a22+a12*a21), -a11/(-a11*a22+a12*a21)] AE =
[ 1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)]
[ 1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)] 9因式分解:x4?5x3?5x2?5x?6 >> syms x;
>> f=x^4-5*x^3+5*x^2+5*x-6; >> factor(f) ans =
(x-1)*(x-2)*(x-3)*(x+1)
?10f??ax21??x?,用符号微分求df/dx?eaxlog(x)sin(x)?。
?>> syms a x;
>> f=[a, x^2, 1/x; exp(a*x), log(x), sin(x)]; >> df=diff(f) df =
[ 0, 2*x, -1/x^2] [ a*exp(a*x), 1/x, cos(x)] 11求?x2arctanxdx.和?10(x?x2)dx.
程序如下: >> syms x;
>> int(x^2*atan(x),'x') ans =
1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1) >> simple(ans) 结果如下: ans =
1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1) -------- 程序如下: >> syms x; >> int(x-x^2,'x',0,1) 结果如下: ans = 1/6
12微分方程y???2y??5y?excos2x的通解. 程序如下: >> syms x y;
>> dsolve('D2y-2*Dy+5*y=exp(x)*cos(2*x)') ans =
exp(t)*sin(2*t)*C2+exp(t)*cos(2*t)*C1+1/5*exp(x)*cos(2*x)
13求代数方程组???ax2?by?c?0??x?y?0关于x,y的解
>> S=solve('a*x^2+b*y+c=0','b*x+c=0','x','y'); >> disp('S.x=') , disp(S.x) >> disp('S.y=') , disp(S.y) S.x= -c/b S.y=
-c*(a*c+b^2)/b^3
??x1?x2?2x3?x4?0,?x1?x14求方程组??3xx?2?2x3?x4?11?x2?x3?24?0,?2x1?x2?x3?2x4?3?5x2?7x3?3x 和?4?0,x1?x3?x?2??4?2x1?3x2?5x3?x4?0.??3x1?x2?3x4?5程序如下: >> a1=[1 1 -2 -1]; >> a2=[3 -1 -1 2]; >> a3=[0 5 7 3]; >> a4=[2 -3 -5 -1];
>> linsolve([a1;a2;a3;a4],[0 0 0 0]') ans =
0 0 0 0 该方程组无解. ------- 程序如下: >> a1=[1 -1 2 1]; >> a2=[2 -1 1 2]; >> a3=[1 0 -1 1]; >> a4=[3 -1 0 3];
>> null([a1;a2;a3;a4],'r') ans = 1 -1 3 0 1 0 0 1
所以该方程组的通解为: (其中k1 k2为任意常数)
15符号函数绘图法绘制函数x=sin(3t)cos(t),y=sin(3t)sin(t)的图形,t的变化范围为[0,2?]
>> syms t
>> ezplot(sin(3*t)*cos(t),sin(3*t)*sin(t),[0,2*pi])
16有一组测量数据满足y?e-at,t的变化范围为0~10,用不同的
线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线,并加入标题和图列框(用代码形式生成)
>> t=0:0.5:10;
>> y1=exp(-0.1*t); >> y2=exp(-0.2*t); >> y3=exp(-0.5*t);
>> plot(t,y1,'-ob',t,y2,':*r',t,y3,'-.^g')
>> title('\\ity\\rm=e^{-\\itat}','FontSize',12) >> legend('a=0.1','a=0.2','a=0.5')
17 x= [66 49 71 56 38],绘制饼图并将第五个切块分离 >> x=[66 49 71 56 38]; >> L=[0 0 0 0 1]; >> pie(x,L)
18 z?xe?x2?y2,当x和y的取值范围均为-2到2时,用建立子
窗口的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和带渲染效果的表面图
>> [x,y]=meshgrid([-2:.2:2]); >> z=x.*exp(-x.^2-y.^2); >> mesh(x,y,z)
>> subplot(2,2,1), plot3(x,y,z) >> title('plot3 (x,y,z)')
>> subplot(2,2,2), mesh(x,y,z) >> title('mesh (x,y,z)')
>> subplot(2,2,3), surf(x,y,z) >> title('surf (x,y,z)')
>> subplot(2,2,4), surf(x,y,z), shading interp >> title('surf (x,y,z), shading interp')
19 在区间[?1,1]画出函数y?sin1x的图形 程序如下:
>> fplot('sin(1/x)',[-pi/12,pi/12]) >> grid
>> title('graph of sin(1/x)') 结果如下:
graph of sin(1/x)10.80.60.40.20-0.2-0.4-0.6-0.8-1-0.25-0.2-0.15-0.1-0.0500.050.10.150.20.2520 分别画出坐标为(i,i2),(i2,4i2?i3),(i?1,2,?,10)的散点图, 并画出折线图
程序如下: >> for i=1:10
plot(i,i.^2,'.'); hold on
plot(i.^2,4*i.^2+i.^3,'.'); end
>> x=1:10; >> y=x.^2; >> plot(x,y);
>> plot(x.^2,4*x.^2+x.^3); >> axis([0,105,0,1450]) 结果如下:
1400cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b
>> g=inline('cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b'); >> g(a,b,1/(a+b)) ans =
cos(a/(a+b))*a*cos(b/(a+b))-sin(a/(a+b))*sin(b/(a+b))*b
1200100080060040020000102030405060708090100 21在区间[?4,4]上作出函数f(x)?x??x?9x的图形, 并计算
x3?x3limf(x) 和 limf(x).
x?1程序如下: >> syms x;
>> f=(x^3-9*x)/(x^3-x); >> limit(f,x,inf) ans = 1
>> limit(f,x,1) ans = NaN
绘制f(x)的图形程序如下: >> f=inline('(x.^3-9*x)./(x.^3-x)'); >> x=-4:0.01:4; >>plot(x,f(x))
5004003002001000-100-200-300-400-4-3-2-101234
?1?22 求函数f(x)?sinaxcosbx的一阶导数. 并求f???.
a?b??程序如下: >> syms x a b; >> f=sin(a*x)*cos(b*x); >> diff(f) ans =
cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b >> simple(ans) ans =
相关推荐: