相反,脂肪浸润区域或含脂肪的肿瘤组织则因与纯脂肪组织的T1值不一样,反而得不到充分抑制,因此TI应根据脂肪结构、解剖部位及个体间差异合理选择。STIR不但可抑制全部脂肪组织信号,还可抑制部分水信号,它是目前唯一对磁场非均匀性不敏感的脂肪抑制技术。另外,在STIR序列中,T1、T2对比增加,具有长T1和长T2的组织对比非常明显,该特性有助于对肿瘤的检测。STIR序列常用于盆腔病变的检测及鉴别,如: 直肠瘘、脂肪瘤、卵巢畸胎瘤等。
图2中,上面两幅图像是翻转恢复序列乳腺脂肪抑制像,下面两幅为梯度序列像。
图2. 乳腺脂肪抑制像 3. 影响脂肪抑制效果的因素
正如前面说述,在STIR序列中,TI是影响脂肪抑制效果的关键参数,当TI值选择不恰当时,被抑制的可能不是所希望的脂肪,而是其它组织信号,从而导致脂肪抑制失败。为了确定抑制脂肪信号的最佳TI,目前已开发了基于频谱显示的TI调谐技术,该技术是将频率选择饱和与STIR相结合,如飞利浦的SPIR序列,GE的SPECIAL序列。另外,在对比增强扫描中,由于顺磁性造影剂可显著缩短血供丰富组织的T1值,而脂肪因少血管,T1值几乎不受影响,STIR序列反而使病变组织与脂肪组织的对比变差,甚至使病灶信号完全丢失,因此在增强扫描时不适宜用STIR序列。 三 反相位成像 1. 基本原理
反相位(Opposed-phase)成像是根据水和脂肪在外磁场的作用下,共振频率不一样,质子间的相位不一致,在不同的回波时间可获得不同相位差的影像这一基本原理而开发的脂肪抑制序列。所谓相位是指在横向平面磁化矢量的相位角。当脂肪质子和水质子处于同一体素中时,由于它们有不同的共振频率,在初始激发后,这些质子间随着时间变化相位亦发生变化,但在激励后的瞬间,脂肪质子和水质子处在同一相位,即它们之间的相位差为零,而水质子比脂肪质子进动频率快,经过数毫秒后,两者之间的相位差变为180°,再经过数毫秒后,相对于脂肪质子,水质子完成360°的旋转,它们又处于同相位,因此通过选择适当的回波时间,可在水和脂肪质子宏观磁化矢量相位一致或相位反向时采集回波信号。在常规MR成像序列中,同一体素的信号是该体素中水和脂肪质子宏观磁化矢量和的模。在相位一致(In Phase)影像中,水和脂肪信号相加。而在反相位成
5
像时,水和脂肪信号抵消,剩余信号的大小除了受序列的采集参数影响外还取决于该体元内水和脂肪的含量。假定信号采集参数提供质子密度像,如果体元内都是水,则该体元此时表现为高信号;如果体元内都是脂肪,因为图像只提取幅度信息,并不区分信号的正负,该体元也表现为高信号;如果体元内水和脂肪的含量各占50%,信号相减后幅度为零,则该体元表现为低信号。由上可见,反相位成像技术实际上不是一种真正意义上的脂肪抑制技术,但它包含的信息可以帮助有经验的医生有效地区分水和脂肪。一般来说,可以通过很多方法获得反相位的图像,目前临床上主要使用梯度回波序列,所以又通常称为反相位梯度回波技术(Opposed-phase Gradient Echo Technique)。 2. 序列特点及临床应用
反相位成像技术简单、成像时间短,用于腹部MR成像,可在屏息状态下扫描以消除呼吸伪影,其最大优点是可用于证实少量脂肪以及脂肪和水的混合组织。另外反相位成像技术由于只与脂肪和水质子进动频率有关,与进动频率的绝对值无关,因此受静磁场非均匀性影响较小,因此,该技术可用在各种MR成像系统上。反相位成像最适合抑制含有等量脂肪和水的组织信号,在主要以脂肪或水的组织中,抑制效果较差。例如: 在以纯脂肪为主的病变组织中,成像体素中含有的脂肪酐酸和水信号比纯脂肪信号强度小得多,而脂肪信号相当高,反相位成像很难将脂肪信号抑制,因此,反相位成像通常用于抑制脂肪含量较少的病变组织,如肾上腺瘤、局限性脂肪肝及脂肪浸润、骨髓腔肿瘤、卵巢畸胎瘤等。
3. 影响脂肪抑制效果的因素
正如前面所讨论,反相位成像对于纯脂肪组织的信号抑制效果较差,对于包含在脂肪组织中的小肿瘤,反相位脂肪抑制序列难于检测出来,如乳腺中的小肿瘤等。在注射对比剂后,也不宜用反相位成像作为脂肪抑制序列。另外,由于共振频率与磁场强度有关,在选取TE时应根据磁场强度而定,如果TE选择不合适,由于T 2 *衰减效应,信号强度随TE增加而下降,可能会将肝脏脂肪浸润或局限性脂肪肝这类良性病变误诊为恶性病变,因此,反相位的TE时间应短于同相位序列。Rofsky等对一组肝脏脂肪病变患者分别采用In Phase和Opposed-phase梯度回波技术扫描,通过对信号强度进行分析后认为,对类似肝脏局限性脂肪浸润这类病灶,如果只用Opposed-phase序列扫描,有可能难于和其它病变鉴别,必要时可用两种成像技术(Opposed-phase,In Phase)扫描,观察病灶的信号强度是否发生变化,以便做出正确诊断。
6
四 Dixon法
Dixon法是由Dixon提出,其基本原理与Opposed-phase法相似,分别采集水和脂肪质子的In Phase和Opposed-phase两种回波信号,两种不同相位的信号通过运算,去除脂肪信号,产生一幅纯水质子的影像,从而达到脂肪抑制的目的。
Dixon法的缺点是受磁场非均匀性影响较大,计算方法复杂并容易出现错误,因此,目前该方法在临床应用很少。近年来对Dixon法进行了改进,即所谓三点Dixon法
(Three-point Dixon),该方法是在脂肪和水共振频率相位移分别为0°、180°、-180°的三个点采集回波信号,由于增加了一个信号采集点用于修正磁场均匀性偏差引起的信号误差,较好地克服了磁场非均匀性对脂肪抑制效果的影响。据Bredella等报道,经改良后的三点Dixon法在低场强开放式磁共振系统中应用,脂肪抑制效果满意,诊断关节软骨损伤的敏感性和特异性均较高,是一种十分有用的检查技术。
图3. 膝关节的水脂分离图像
脂肪抑制技术是磁共振成像中常用的技术方法之一,主要用于对某些病变组织的鉴别,如肾上腺瘤、脂肪瘤、脂肪浸润及皮脂腺瘤等,改善增强后组织间的对比度、消除脂肪信号对病灶的掩蔽(如眶内病变),或用脂肪抑制技术测量组织内脂肪含量,减少化学位移伪影等。理想的脂肪抑制技术应能根据脂肪含量及信号强度,鉴别该信号所代表的特定组织。脂肪饱和序列主要用于抑制有大量脂肪存在的部位和对比增强扫描中,它的主要缺点是对磁场非均匀性较敏感,不适用于低场强磁共振成像系统。短TI翻转恢复序列对磁场非均匀性不敏感,可在低场强磁共振成像系统中使用,多用于抑制纯脂肪组织和球状脂肪组织,但该序列特异性较差,对具有长T 1和短T 1的组织信号强度难于区分。反相位成像是一种快速、有效的脂肪抑制技术,该序列被推荐用于鉴别含有少量脂肪的病灶,主要缺点是对被脂肪包围的小肿瘤检测可靠性差。最初的Dixon法由于成像时间长,对磁场非均性敏感、易受呼吸运动影响等缺陷,临床应用较少。改进后的Three-point Dixon法克服了上述缺点,可用于低场强开放式磁共振系统中,对关节软骨损伤是非常有效的诊断手段。
本文所介绍的几种主要脂肪抑制序列,各有优缺点,临床应用各有侧重,在临床实践中,我们应深刻理解各种脂肪抑制序列的原理,清楚各序列的优点及适用范围,在临床实践
7
中根据不同解剖部位、组织结构及脂肪含量、病灶与相邻组织间的对比等实际因素选用相应的脂肪抑制序列。
MRI
也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
MRI的优点
* 磁共振成像能对神经结构提供比CT分辨度更佳的成像,而对病人不引起危险.
* MRI对显示脑干病变以及后颅凹其他异常的帮助尤其大,因为这个部位的CT扫描常为骨纹伪迹所干扰.
* MRI能发现脱髓鞘斑块,早期梗塞,亚临床脑水肿,脑挫伤,初期的经小脑幕脑疝,颅颈交界处异常以及脊髓空洞症.有时,炎症,脱髓鞘与肿瘤病变只有在静脉注射顺磁性造影剂(如钆)增强以后才能被发现.
* MRI主要的缺点是费用昂贵,需要特殊的房屋设置.对安装有心脏起搏器者,脑内有磁铁性动脉瘤夹或体内有任何可移动的金属修补物的病人来说,MRI是禁忌的.对椎管内压迫脊髓并且需要紧急干预的一些病变(肿瘤,脓肿),MRI有特殊的诊断价值.
MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。
核磁共振成像原理编辑本段回目录
8
相关推荐: