旋转问题
考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。 一、直线的旋转
1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,MN?4,MA?1,MB?1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB?x. (1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积?
M A B (第1题)
N C
2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°, 根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1; ②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.
(2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC‖ED, ∵CE‖AB,
∴四边形EDBC是平行四边形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30度, ∴AB=4,AC=2 , ∴AO= = .
在Rt△AOD中,∠A=30°, ∴AD=2, ∴BD=2, ∴BD=BC.
又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形.
3、(2009年北京市)
在YABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直
oo线FC1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转90得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=
o4,AE=1,在①的条件下,设CP1=x,SVP1FC1=y,求y与x之间的函数关系式,并3写出自变量x的取值范围. 提示:(1)运用三角形全等,
(2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。
4、(2009 黑龙江大兴安岭) 已知:在?ABC中,BC?AC,动点D绕?ABC的顶点A逆时针旋转,且AD?BC,连结DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N. (1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连结HE、HF,根据三角形中位线定理和平行线的性质,可得结论?AMF??BNE(不需证明).
(2)当点D旋转到图2或图3中的位置时,?AMF与?BNE有何数量关系?请分别写出猜想,并任选一种情况证明.
M
NM
DDF(N) CFCC F
NDH
M
BABAB AEEE
图1 图2 图3
二、角的旋转 5、(2009年中山)(1)如图1,圆心接△ABC中,AB?BC?CA,OD、OE为⊙O的半径,OD?BC于点F,OE?AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的
1. 3(2)如图2,若?DOE保持120°角度不变,
求证:当?DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的
1. 3
相关推荐: