5 下结论(指出函数f(x)在给定的区间D上的单调性). ○
(B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数:如果
y=f(u)(u∈M),u=g(x)(x∈A),则
y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 9:函数的奇偶性(整体性质) (1)、偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)、奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)、具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤:
a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断; b、确定f(-x)与f(x)的关系;
c、作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,
则f(x)是偶函数;
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(4)利用奇偶函数的四则运算以及复合函数的奇偶性 a、在公共定义域内,偶函数的加减乘除仍为偶函数; 奇函数的加减仍为奇函数;
奇数个奇函数的乘除认为奇函数; 偶数个奇函数的乘除为偶函数; 一奇一偶的乘积是奇函数;
a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,
(1)再根据定义判定;
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 10、函数最值及性质的应用 (1)、函数的最值 a 利用二次函数的性质(配方法)求函数的最大(小)值 b 利用图象求函数的最大(小)值
c 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); (2)、函数的奇偶性与单调性
奇函数在关于原点对称的区间上有相同的单调性; 偶函数在关于原点对称的区间上有相反的单调性。
(3)、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。
(4)、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。
(5)、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。
第二章 基本初等函数
一、指数函数 (一)指数
1、 指数与指数幂的运算: 复习初中整数指数幂的运算性质: am*an=am+n
(am)n=amn (a*b)n=anbn
2、根式的概念:一般地,若xn?a,那么x叫做a的n次方根,其中
n>1,且n∈N.
*
当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。此时,a的n次方根用符号 表示。
当n为偶数时,正数的n次方根有两个,这两个数互为相反数。此时正数a的正的n次方根用符号 表示,负的n的次方根用符号 表示。正的n次方根与负的n次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作n0?0。
当n是奇数时,
nnan?a,当n是偶数时,
?a(a?0) an?|a|???a(a?0)?式子na 叫做根式,这里n叫做根指数,a叫做被开方数。 3、 分数指数幂 正数的分数指数幂的
amn?nam(a?0,m,n?N*,n?1),
a?mn?1amn?1nam(a?0,m,n?N*,n?1)
0的正分数指数幂等于0,0的负分数指数幂没有意义 4、 有理数指数米的运算性质
rrr?s(1)a·a?a
(a?0,r,s?R);
rsrs(a)?a(2) rrs(ab)?aa (3)
(a?0,r,s?R); (a?0,r,s?R).
5、无理数指数幂
a
一般的,无理数指数幂a(a>0,a是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。 (二)、指数函数的性质及其特点
1、指数函数的概念:一般地,函数y?ax(a?0,且a?1)叫做指数函数,
其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?
相关推荐: