第一范文网 - 专业文章范例文档资料分享平台

全等三角形证明经典50题(含答案)2

来源:用户分享 时间:2025/11/22 10:37:39 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

三角形的有关证明

1已知:AB=4,AC=2,D是BC中点,111749AD是整数,求AD

A B

D

C

解:延长AD到E,使AD=DE ∵D是BC中点 ∴BD=DC

在△ACD和△BDE中 AD=DE

∠BDE=∠ADC BD=DC

∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE中

AB-BE<AE<AB+BE ∵AB=4

即4-2<2AD<4+2 1<AD<3 ∴AD=2 2已知:D是AB中点,∠ACB=90°,

CD?12AB求证:

A D C B

延长CD与P,使D为CP中点。连

接AP,BP

∵DP=DC,DA=DB ∴ACBP为平行四边形 又∠ACB=90

∴平行四边形ACBP为矩形 ∴AB=CP=1/2AB

3已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

1 A 2 B E C F D

证明:连接BF和EF

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF全等于三角形EDF(边角边)

∴ BF=EF,∠CBF=∠DEF 连接BE

在三角形BEF中,BF=EF ∴ ∠EBF=∠BEF。 ∵ ∠ABC=∠AED。 ∴ ∠ABE=∠AEB。 ∴ AB=AE。

在三角形ABF和三角形AEF中 AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF

∴ 三角形ABF和三角形AEF全等。∴ ∠BAF=∠EAF (∠1=∠2)。

4已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

A 1 2 F C D E B

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD DE=DC

∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG

∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2

∴∠CGD=∠2

∴△AGC为等腰三角形, AC=CG

又 EF=CG

∴EF=AC

5已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

A

证明:延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC ∴∠EAD=∠CAD ∵AE=AC,AD=AD

∴△AED≌△ACD (SAS) ∴∠E=∠C ∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE ∴BD=BE ∴∠BDE=∠E

∵∠ABC=∠E+∠BDE ∴∠ABC=2∠E ∴∠ABC=2∠C

6已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE

证明:

在AE上取F,使EF=EB,连接CF ∵CE⊥AB

∴∠CEB=∠CEF=90° ∵EB=EF,CE=CE, ∴△CEB≌△CEF ∴∠B=∠CFE

∵∠B+∠D=180°,∠CFE+∠CFA=180° ∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC ∵AC=AC

∴△ADC≌△AFC(SAS)

∴AD=AF

∴AE=AF+FE=AD+BE

7已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

A B

D

C

解:延长AD到E,使AD=DE ∵D是BC中点 ∴BD=DC

在△ACD和△BDE中 AD=DE

∠BDE=∠ADC BD=DC

∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE中

AB-BE<AE<AB+BE ∵AB=4

即4-2<2AD<4+2 1<AD<3 ∴AD=2

8已知:D是AB中点,∠ACB=90°,

CD?12AB求证:

A D C B

解:延长AD到E,使AD=DE ∵D是BC中点 ∴BD=DC

在△ACD和△BDE中 AD=DE

∠BDE=∠ADC BD=DC

∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE中

AB-BE<AE<AB+BE ∵AB=4

即4-2<2AD<4+2 1<AD<3 ∴AD=2

9已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

A 1 2 B E C F D

证明:连接BF和EF。

∵ BC=ED,CF=DF,∠BCF=∠EDF。 ∴ 三角形BCF全等于三角形EDF(边角边)。

∴ BF=EF,∠CBF=∠DEF。 连接BE。

在三角形BEF中,BF=EF。 ∴ ∠EBF=∠BEF。 又∵ ∠ABC=∠AED。 ∴ ∠ABE=∠AEB。 ∴ AB=AE。

在三角形ABF和三角形AEF中, AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。

∴ 三角形ABF和三角形AEF全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。

10已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

A 1 2 F C D E B

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG

∠CGD=∠EFD 又EF∥AB ∴∠EFD=∠1 ∠1=∠2

∴∠CGD=∠2

∴△AGC为等腰三角形, AC=CG 又 EF=CG ∴EF=AC

11已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

A B

D C

证明:延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC ∴∠EAD=∠CAD ∵AE=AC,AD=AD

∴△AED≌△ACD (SAS) ∴∠E=∠C ∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE ∴BD=BE ∴∠BDE=∠E

∵∠ABC=∠E+∠BDE ∴∠ABC=2∠E ∴∠ABC=2∠C

12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。

在BC上截取BF=AB,连接EF

∵BE平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE

∴⊿ABE≌⊿FBE(SAS) ∴∠A=∠BFE ∵AB//CD

∴∠A+∠D=180o

∵∠BFE+∠CFE=180o ∴∠D=∠CFE

又∵∠DCE=∠FCE CE平分∠BCD CE=CE

∴⊿DCE≌⊿FCE(AAS) ∴CD=CF

∴BC=BF+CF=AB+CD

13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C

E D F C A B

AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE, ∴∠AED=∠ABD,

∴四边形ABDE是平行四边形。 ∴得:AE=BD, ∵AF=CD,EF=BC,

∴三角形AEF全等于三角形DBC, ∴∠F=∠C。

14 已知:AB=CD,∠A=∠D,求证:∠B=∠C

A D B C

证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则: △AED是等腰三角形。 ∴AE=DE 而AB=CD

∴BE=CE (等量加等量,或等量减等量)

∴△BEC是等腰三角形 ∴∠B=∠C.

15 P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

C A

P D B

在AC上取点E, 使AE=AB。 ∵AE=AB AP=AP

∠EAP=∠BAE, ∴△EAP≌△BAP ∴PE=PB。 PC<EC+PE

∴PC<(AC-AE)+PB ∴PC-PB<AC-AB。

16 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

证明:

在AC上取一点D,使得角DBC=角C

∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD

∴AC – AB =AC-AD=CD=BD 在等腰三角形ABD中,AE是角BAD的角平分线, ∴AE垂直BD ∵BE⊥AE

∴点E一定在直线BD上, 在等腰三角形ABD中,AB=AD,AE垂直BD

∴点E也是BD的中点

∴BD=2BE

∵BD=CD=AC-AB ∴AC-AB=2BE

17 已知,E是AB中点,AF=BD,BD=5,AC=7,求DC

D F C A E B

∵作AG∥BD交DE延长线于G ∴AGE全等BDE ∴AG=BD=5 ∴AGF∽CDF AF=AG=5 ∴DC=CF=2

18.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.

解:延长AD至BC于点E,

∵BD=DC ∴△BDC是等腰三角形

∴∠DBC=∠DCB

又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2

即∠ABC=∠ACB

∴△ABC是等腰三角形 ∴AB=AC

在△ABD和△ACD中 {AB=AC ∠1=∠2 BD=DC

∴△ABD和△ACD是全等三角形(边角边)

∴∠BAD=∠CAD

∴AE是△ABC的中垂线 ∴AE⊥BC ∴AD⊥BC

19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.

求证:∠OAB=∠OBA

证明:

∵OM平分∠POQ ∴∠POM=∠QOM ∵MA⊥OP,MB⊥OQ ∴∠MAO=∠MBO=90 ∵OM=OM

∴△AOM≌△BOM (AAS) ∴OA=OB ∵ON=ON

∴△AON≌△BON (SAS)

∴∠OAB=∠OBA,∠ONA=∠ONB ∵∠ONA+∠ONB=180 ∴∠ONA=∠ONB=90 ∴OM⊥AB 20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

PC

E D做BE的

AB延长线,与AP相

交于F点, ∵PA//BC

∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线 ∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线

∴三角形FAB为等腰三角形,AB=AF,BE=EF

在三角形DEF与三角形BEC中, ∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,

∴三角形DEF与三角形BEC为全等三角形,∴DF=BC

∴AB=AF=AD+DF=AD+BC

21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B A CDB延长AC到E

使AE=AC 连接 ED ∵ AB=AC+CD ∴ CD=CE 可得∠B=∠E △CDE为等腰 ∠ACB=2∠B 22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

(1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

(1)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA(HL),

∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF; (2)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF.

23.已知:如图,DC∥AB,且DC=AE,E为AB的中点,

(1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

A

EOD

证明:

BC∵DC∥AB ∴∠CDE=∠AED ∵DE=DE,DC=AE ∴△AED≌△EDC ∵E为AB中点 ∴AE=BE ∴BE=DC ∵DC∥AB

∴∠DCE=∠BEC ∵ CE=CE

∴△EBC≌△EDC ∴△AED≌△EBC 24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延

长线于F.

求证:BD=2CE.

F A ED BC 证明: ∵∠CEB=∠CAB=90° ∴ABCE四点共元 ∵∠AB E=∠CB E ∴AE=CE ∴∠ECA=∠EAC 取线段BD的中点G,连接AG,则:

AG=BG=DG ∴∠GAB=∠ABG 而:∠ECA=∠GBA (同弧上的圆周角相等) ∴∠ECA=∠EAC=∠GBA=∠GAB

搜索更多关于: 全等三角形证明经典50题(含答案)2 的文档
全等三角形证明经典50题(含答案)2.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4ysi59cgjm2i4cw3qilj_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top