第一范文网 - 专业文章范例文档资料分享平台

数控铣削加工工艺 - 图文

来源:用户分享 时间:2025/10/14 10:52:32 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

面。对不便装夹的毛坯,可考虑在毛坯另外增加装夹余量或工艺凸台、工艺凸耳等辅助基准。 3、分析毛坯的变形、余量大小及均匀性 分析毛坯加工中与加工后的变形程度,考虑是否应采取预防性措施和补救措施。如对于热轧中、厚铝板,经淬火时效后很容易加工变形,这是最好采用经欲拉伸处理的淬火板坯。 对毛坯余量大小及均匀性,主要考虑在加工中要不要分层铣削,分几层铣削。在自动编程中,这个问题尤为重要。 零件图形的数学处理 1、零件手工编程尺寸及自动编程时建模图形尺寸的确定 数控铣削加工零件时,手工编程尺寸及自动编程零件建模图形的尺寸不能简单的直接取零件图上的基本尺寸,要进行分析,有关尺寸应按下述步骤进行调整: (1)精度高的尺寸的处理:将基本尺寸换算成平均尺寸; (2)精度低的尺寸的调整:通过修改一般尺寸,保持零件原有几何关系; (3)几何关系的处理:保持原重要的几何关系,如角度、相切等不变; (4)节点坐标尺寸的计算:按调整后的尺寸计算有关未知节点的坐标尺寸; (5)编程尺寸的修正:按调整后的尺寸编程并加工一组工件,测量关键尺寸的实际分散中心并求出常值系统性误差,再按此误差对程序尺寸进行调整,修改程序。 2、圆弧参数计算误差的处理 按零件图纸计算圆弧参数时,一般会产生误差,特别是在两个或两个以上的圆连续相交时,会产生较大误差累积,其结果使圆弧起点相对于圆心的增量值I、J的误差较大。此时,可以根据实际零件图形改动一下圆弧半径值或圆心坐标(在许可范围内),或采用互相“借”一点误差的方法来解决。 3、转接凹圆弧的处理 对于直线轮廓所夹的凹圆弧,一般可由铣刀半径直接形成,而不必走圆弧轨迹。但对于与圆弧相切或相交的转接凹圆弧,通常都用走圆弧轨迹的方法解决。 由于转接凹圆弧一般都不大,选择铣刀直径时往往受其制约。另如果按放大刀具半径补偿法加工时,若仍沿用图纸给出的转接凹圆弧半径,就可能受到限制。 因此,最好把图纸中最小的转接凹圆弧半径放大一些(在许可范围内),在原刀具不变的情况下,可以扩大刀具半径补偿范围。当其半径较小时,则可先按大圆弧半径来编,再安排补加工。 加工工序的划分 在数控机床上特别是在加工中心上加工零件,工序十分集中,许多零件只需在一次装卡中就能完成全部工序。但是零件的粗加工,特别是铸、锻毛坯零件的基准平面、定位面等的加工应在普通机床上完成之后,再装卡到数控机床上进行加工。这样可以发挥数控机床的特点,保持数控机床的精度,延长数控机床的使用寿命,降低数控机床的使用成本。在数控机床上加工零件其工序划分的方法有: 1、刀具集中分序法 即按所用刀具划分工序,用同一把刀加工完零件上所有可以完成的部位,在用第二把刀、第三把刀完成它们可以完成的其它部位。这种分序法可以减少换刀次数,压缩空程时间,减少不必要的定位误差。 2、粗、精加工分序法 这种分序法是根据零件的形状、尺寸精度等因素,按照粗、精加工分开的原则进行分序。对单个零件或一批零件先进行粗加工、半精加工,而后精加工。粗精加工之间,最好隔一段时 理论讲授 举例说明 间,以使粗加工后零件的变形得到充分恢复,再进行精加工,以提高零件的加工精度。 3、按加工部位分序法 即先加工平面、定位面,再加工孔;先加工简单的几何形状,再加工复杂的几何形状;先加工精度比较低的部位,再加工精度要求较高的部位。 总之,在数控机床上加工零件,其加工工序的划分要视加工零件的具体情况具体分析。许多工序的安排是综合了上述各分序方法的。 选择走刀路线 走刀路线是数控加工过程中刀具相对于被加工件的的运动轨迹和方向。走刀路线的确定非常重要,因为它与零件的加工精度和表面质量密切相关。确定走刀路线的一般原则是: (1)保证零件的加工精度和表面粗糙度; (2)方便数值计算,减少编程工作量; (3)缩短走刀路线,减少进退刀时间和其他辅助时间; (4)尽量减少程序段数。 另外,在选择走刀路线时还要充分注意以下所讲解的几个方面的内容。 避免引入反向间隙误差 数控机床在反向运动时会出现反向间隙,如果在走刀路线中将反向间隙带入,就会影响刀具的定位精度,增加工件的定位误差。例如精镗图3.2.3中所示的四个孔,由于孔的位置精度要求较高,因此安排镗孔路线的问题就显得比较重要,安排不当就有可能把坐标轴的反向间隙带入,直接影响孔的位置精度。这里给出两个方案,方案a如图3.2.3a)所示,方案b如图3.2.3b)所示。 从图中不难看出,方案a中由于Ⅳ孔与Ⅰ、Ⅱ、Ⅲ孔的定位方向相反,X向的反向间隙会使定位误差增加,而影响Ⅳ孔的位置精度。 在方案b中,当加工完Ⅲ孔后并没有直接在Ⅳ孔处定位,而是多运动了一段距离,然后折回来在Ⅳ孔处定位。这样Ⅰ、Ⅱ、Ⅲ孔与Ⅳ孔的定位方向是一致的,就可以避免引入反向间隙的误差,从而提高了Ⅳ孔与各孔之间的孔距精度。 XX 对刀点对刀点 ①①ⅠⅠ举例说明 ②② ③Ⅱ③ⅡⅣⅣⅢⅢ ④⑤④ OOYY (a)(b) 图3.2.3 镗铣加工路线图 切入切出路径 在铣削轮廓表面时一般采用立铣刀侧面刃口进行切削,由于主轴系统和刀具的刚度变化, 当沿法向切入工件时,会在切入处产生刀痕,所以应尽量避免沿法向切入工件。当铣切外表面 轮廓形状时,应安排刀具沿零件轮廓曲线的切向切入工件,并且在其延长线上加入一段外延距 离,以保证零件轮廓的光滑过渡。同样,在切出零件轮廓时也应从工件曲线的切向延长线上切 出。如图3.2.4a)所示。 当铣切内表面轮廓形状时,也应该尽量遵循从切向切入的方法,但此时切入无法外延,最好安排从圆弧过渡到圆弧的加工路线。切出时也应多安排一段过渡圆弧再退刀,如图3.2.4b)所示。当实在无法沿零件曲线的切向切入、切出时,铣刀只有沿法线方向切入和切出,在这种情况下,切入切出点应选在零件轮廓两几何要素的交点上,而且进给过程中要避免停顿。 刀具运动轨迹刀具运动轨迹 原点原点① ④②⑤③⑥ 取消刀具补偿点⑤③①切出点 ②④切入点 圆弧切入点 (a)铣削外圆加工路径(b)铣削内圆加工路径 图3.2.4 铣削圆的加工路线 为了消除由于系统刚度变化引起进退刀时的痕迹,可采用多次走刀的方法,减小最后精铣 时的余量,以减小切削力。 在切入工件前应该已经完成刀具半径补偿,而不能在切入工件时同时进行刀具补偿,如图 3.2.4a)所示,这样会产生过切现象。为此,应在切入工件前的切向延长线上另找一点,作为 完成刀具半径补偿点,如图3.2.4b)所示。 图3.2.5切入切出路径 例如,3.2.5所示零件的切入切出路线应当考虑注意切入点及延长线方向。 顺、逆铣及切削方向和方式的确定 在铣削加工中,若铣刀的走刀方向与在切削点的切削分力方向相反,称为顺铣;反之则称 为逆铣。由于采用顺铣方式时,零件的表面精度和加工精度较高,并且可以减少机床的“颤振”, 所以在铣削加工零件轮廓时应尽量采用顺铣加工方式。 若要铣削内沟槽的两侧面,就应来回走刀两次,保证两侧面都是顺铣加工方式,以使两侧 面具有相同的表面加工精度。 数控铣削加工工艺参数的确定 确定工艺参数是工艺制定中重要的内容,采用自动编程时更是程序成功与否的关键。 (一)用球铣刀加工曲面时与切削精度有关的工艺参数的确定 1、步长l(步距)的确定 步长l(步距)——每两个刀位点之间距离的长度,决定刀位点数据的多少。 曲线轨迹步长l的确定方法: 直接定义步长法:在编程时直接给出步长值,根据零件加工精度确定 间接定义步长法:通过定义逼近误差来间接定义步长 2、逼近误差er的确定 逼近误差er——实际切削轨迹偏离理论轨迹的最大允许误差 三种定义逼近误差方式(如图16-4所示): 指定外逼近误差值:以留在零件表面上的剩余材料作为误差值 (精度要求较高时一般采用,选为0.0015~0.03mm) 指定内逼近误差值:表示可被接受的表面过切量 同时指定内、外逼近误差 er e rer (a) (b) (c) 图3.2.6 指定逼近误差 3、行距S(切削间距)的确定 行距S(切削间距)——加工轨迹中相邻两行刀具轨迹之间的距离。 影响: 行距小:加工精度高,但加工时间长,费用高 行距大:加工精度低,零件型面失真性较大,但加工时间短。 两种方法定义行距: (1)直接定义行距 算法简单、计算速度快,适于粗加工、半精加工和形状比较平坦零件的精加工的刀具运动轨迹的生成。 (2)用残留高度h来定义行距 残留高度h——被加工表面的法矢量方向上两相邻切削行之间残留沟纹的高度。 h大:表面粗糙度值大 h小:可以提高加工精度,但程序长,占机时间成倍增加,效率降低 选取考虑: 粗加工时,行距可选大些,精加工时选小一些。有时为减小刀峰高度,可在原两行之间加密行切一次,即进行曲刀峰处理,这相当于将S减小一半,实际效果更好些。 (二)与切削用量有关的工艺参数确定 1、背吃刀量ap与侧吃刀量ae 背吃刀量ap——平行于铣刀轴线测量的切削层尺寸。 侧吃刀量ae——垂直于铣刀轴线测量的切削层尺寸。 从刀具耐用度的角度出发,切削用量的选择方法是: 理论讲授 理论讲授 先选取背吃刀量ap或侧吃刀量ae,其次确定进给速度,最后确定切削速度。 如果零件精度要求不高,在工艺系统刚度允许的情况下,最好一次切净加工余量,以提高加工效率;如果零件精度要求高,为保证精度和表面粗糙度,只好采用多次走刀。 2、与进给有关参数的确定 在加工复杂表面的自动编程中,有五种进给速度须设定,它们是: (1)快速走刀速度(空刀进给速度) 为节省非切削加工时间,一般选为机床允许的最大进给速度,即G00速度。 (2)下刀速度(接近工件表面进给速度) 为使刀具安全可靠的接近工件,而不损坏机床、刀具和工件,下刀速度不能太高,要小于或等于切削进给速度。对软材料一般为200mm/min;对钢类或铸铁类一般为50mm/min。 (3)切削进给速度F 切削进给速度应根据所采用机床的性能、刀具材料和尺寸、被加工材料的切削加工性能和加工余量的大小来综合的确定。 一般原则是:工件表面的加工余量大,切削进给速度低;反之相反。 切削进给速度可由机床操作者根据被加工工件表面的具体情况进行手工调整,以获得最佳切削状态。切削进给速度不能超过按逼近误差和插补周期计算所允许的进给速度。 建议值: 加工塑料类制件:1500 mm/min 加工大余量钢类零件:250 mm/min 小余量钢类零件精加工:500 mm/min 铸件精加工:600 mm/min (4)行间连接速度(跨越进给速度) 行间连接速度——刀具从一切削行运动到下一切削行的运动速度。 该速度一般小于或等于切削进给速度。 (5)退刀进给速度(退刀速度) 为节省非切削加工时间,一般选为机床允许的最大进给速度,即G00速度。 3、与切削速度有关的参数确定 (1)切削速度υc 切削速度υc的高低主要取决于被加工零件的精度和材料、刀具的材料和耐用度等因素。 (2)主轴转速n 主轴转速n根据允许的切削速度υc来确定:n=1000υc/πd 理论上,υc越大越好,这样可以提高生产率,而且可以避开生成积屑瘤的临界速度,获得较低的表面粗糙度值。但实际上由于机床、刀具等的限制,使用国内机床、刀具时允许的切削速度常常只能在100~200m/min范围内选取。 四、新课小结: 1、对刀点可以设在零件上、夹具上或机床上,但必须与零件的定位基准有已知的准确关系。当对刀精度要求较高时,对刀点应尽量选在零件的设计基准或工艺基准上。对于以孔定位的零件,可以取孔的中心作为对刀点。 2、“换刀点”应根据工序内容来作安排,其位置应根据换刀时刀具不碰到工件、夹具和机床的原则而定。换刀点往往是固定的点,且设在距离工件较远的地方。 3、数控铣削加工有着自己的特点和适用对象,若要充分发挥数控铣床的优势和关键作用,就应当正确选择数控铣床类型、数控加工对象与工序内容。数控铣床适合加工形状复杂、尺寸繁多、数学模型复杂的零件。 理论讲授 分析总结

搜索更多关于: 数控铣削加工工艺 - 图文 的文档
数控铣削加工工艺 - 图文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4yxb39evxk5o77k30e8m0fvqu4yw2700pge_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top