初三数学九上压轴题难题提高题培优题
一.解答题(共8小题)
1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.
2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°. (1)求这条抛物线的表达式;
(2)联结OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点
.
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分? 4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由. 5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3). (1)求抛物线的函数解析式; (2)求tan∠ABO的值;
(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标. 6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧. (1)若抛物线C1过点M(2,2),求实数m的值; (2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C. (1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示); (2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由; (3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
初三数学九上压轴题难题提高题培优题
参考答案与试题解析
一.解答题(共8小题)
1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.
【解答】解:由题意可知.解得.
∴抛物线的表达式为y=﹣.
(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1). 设直线MA的表达式为y=kx+b,则
.
解得.
∴直线MA的表达式为y=x+1. 设点D的坐标为(DF==当此时
),则点F的坐标为().
.
时,DF的最大值为.
,即点D的坐标为(
).
(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,
).
在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在
第一象限.
①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3AN, ∴
,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.又
﹣3<m<0,故此时满足条件的点不存在.
②当点P在第三象限时,∵点P不可能在直线MA上,∴只能PN=3AN, ∴
,即m2+11m+24=0.
解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15). ③当点P在第四象限时,若AN=3PN时,则﹣36=0.
解得m=﹣3(舍去)或m=2. 当m=2时,若PN=3NA,则﹣
.此时点P的坐标为(2,﹣).
,即m2﹣7m﹣30=0.
,即m2+m﹣
解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).
综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39). 2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过
点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°. (1)求这条抛物线的表达式;
(2)联结OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
【解答】解:(1)如图,过点A作AD⊥y轴于点D, ∵AO=OB=4, ∴B(4,0). ∵∠AOB=120°, ∴∠AOD=30°, ∴AD=OA=2,OD=
OA=2
.
∴A(﹣2,2).
将A(﹣2,2),B(4,0)代入y=ax2+bx,得:
,解得:
,
∴这条抛物线的表达式为y=x2﹣x;
(2)过点M作ME⊥x轴于点E, ∵y=
x2﹣
x=
(x﹣2)2﹣
, .
∴M(2,﹣∴tan∠EOM=
),即OE=2,EM==
.
∴∠EOM=30°.
∴∠AOM=∠AOB+∠EOM=150°. (3)过点A作AH⊥x轴于点H, ∵AH=2,HB=HO+OB=6, ∴tan∠ABH=
=
.
∴∠ABH=30°, ∵∠AOM=150°, ∴∠OAM<30°, ∴∠OMA<30°,
∴点C不可能在点B的左侧,只能在点B的右侧. ∴∠ABC=180°﹣∠ABH=150°, ∵∠AOM=150°, ∴∠AOM=∠ABC.
∴△ABC与△AOM相似,有如下两种可能: ①△BAC与∽△OAM,②△BAC与∽△OMA ∵OD=2,ME=∴OM=∵AH=2∴AB=4
, ,BH=6, .
,
相关推荐: