T0?(p0/p1)?T1= {(100/200)×300} K= 150K
第一步骤,恒容:dV=0,W1=0,根据热力学第一定律,得 Q1??U1??150K300KnCV,mdT
= {1×(5/2)×8.3145×(150-300)} J= -3118 J = -3.118 kJ
?S1?nCV,mln(T0/T1)?{1?(5/2)?8.314?ln(150/300)} J·K = -14.41 J·K
-1
-1
第二步: Q2??H??300K150KnCp,mdT
= {1×(7/2)×8.3145×(300-150)} J= 4365 J = 4.365 kJ
?S2?nCp,mln(T2/T0)?{1?(7/2)?8.314?ln(300/150)} J·K = +20.17 J·K
-1
-1
Q = Q1 + Q2 = {(-3.118)+ 4.365 } kJ = 1.247 kJ
-1-1
△S = △S1 + △S2 = {(-14.41)+ 20.17 } J·K = 5.76 J·K (3)第一步骤为绝热可逆,故
T0?(p0/p1)Q1,r=0,△S1 =Q2??H??R/Cp,m?T1?{(100/200)2/7?300}K?246.1K
?T01T1(?Qr/T)=0
300K246.1KnCp,mdT= {1×(7/2)×8.3145×(300-246.1)} J= 1568 J = 1.568 kJ
-1
-1
?S2?nCp,mln(T2/T0)?{1?(7/2)?8.314?ln(300/246.1)} J·K = +5.76 J·K
Q = Q1 + Q2 = {0+ 1.568 } kJ = 1.568 kJ
△S = △S1 + △S2 = {0+ 5.76} J·K-1 = 5.76 J·K-1
3-10 1 mol 理想气体T=300K下,从始态100 kPa 经下列各过程,求Q,△S及△S i so。 (1)可逆膨胀到末态压力为50 kPa;
(2)反抗恒定外压50 kPa 不可逆膨胀至平衡态; (3)向真空自由膨胀至原体积的两倍。 解:(1)恒温可逆膨胀,dT =0,△U = 0,根据热力学第一定律,得
Q??W??nRTln(p2/p1)
= {- 1×8.314×300×ln(50/100)} J = 1729 J=1.729 kJ
?Ssys??nRln(p2/p1)
= {- 1×8.314×ln(50/100)} J·K = 5.764 J·K
-1
-1
?Samb??Qsys/Tamb= (17290/300)J·K-1= - 5.764 J·K-1
故 △S i so = 0 (2) △U = 0,
Q2= -W = pamb(V2 – V1)= pamb {(nRT / pamb)-(nRT / p1) = nRT{ 1-( pamb / p1)}
= {-1×8.314×300×(1-0.5)} J = 1247 J = 1.247 kJ
33
?Ssys??nRln(p2/p1)
= {- 1×8.314×ln(50/100)} J·K = 5.764 J·K
-1
-1
?Samb??Qsys/Tamb= (-1247÷300)J·K-1= - 4.157 J·K-1
△S iso= △Ssys + △Samb = {5.764 +(- 4.157)} J·K = 1.607 J·K (3)△U = 0,W = 0,Q=0
-1
-1
?Samb??Qsys/Tamb= 0
因熵是状态函数,故有
?Ssys?nRln(V2/V1)?nRln(2V1/V1)
= {1×8.314×ln2 } J·K = 5.764 J·K
-1
△S iso= △Ssys + △Samb = 5.764 J·K
3
3-11 某双原子理想气体从T1=300K,p1= 100 kPa,V1= 100 dm的始态,经不同过程变化到下述状态,求各过程的△S。
3
(1)T2 = 600K,V2= 50 dm;(2)T2 = 600K,p2= 50 kPa;
3
(3)p2= 150 kPa,V2= 200 dm; 解:先求该双原子气体的物质的量n:
-1
-1
pV?100?103?100?10?3??n???mol?4.01mol ??RT?8.314?300?(1)?S?nCV,mln(T2/T1)?nRln(V2/V1) ??4.01???5R60050?-1?1ln?4.01?Rln?J?K= 34.66 J·K 2300100?(2)?S?nCp,mln(T2/T1)?nRln(p2/p1) ??4.01???7R60050?-1?1ln?4.01?Rln?J?K= 103.99 J·K 2300100?(3)?S?nCV,mln(p2/p1)?nCp,mln(V2/V1) ??4.01???5R1507R100?-1?1ln?4.01?ln?J?K= 114.65 J·K 21002200?3
3-12 2 mol双原子理想气体从始态300K,50 dm,先恒容加热至 400 K,再恒压加热至体积
3
增大至 100m,求整个过程的Q,W,△U,△H及△S。
解:过程为
2mol 双原子气体2mol 双原子气体2mol 双原子气体恒容加热恒压加热 T1?300K?????T0?400K?????T2??50dm3,p150dm3,p0100dm3,p0p1?2RT/V1?{2?8.3145?300/(50?10?3)}Pa?99774Pa
p0?p1T0/T1?{99774?400/300}Pa?133032Pa
34
T2?p0V2/(nR)1?{133032?100?10?3/(2?8.3145)}K?800.05K
W1=0; W2= -pamb(V2-V0)= {-133032×(100-50)×10} J= - 6651.6 J 所以,W = W2 = - 6.652 kJ
7?H?nCp,m(T2?T1)?{2?R?(800.05?300)}J?29104J?29.10kJ
25?U?nCV,m(T2?T1)?{2?R?(800.05?300)}J?20788J?20.79kJ
2-3
Q = △U – W = (27.79 + 6.65)kJ≈ 27.44 kJ
?S??SV??Sp?nCV,mlnT0T?nCp,mln2 T1T0-1 -1
= {2?5Rln400?2?7Rln800.05} J·K= 52.30 J·K
230024003-13 4 mol 单原子理想气体从始态750 K,150 kPa,先恒容冷却使压力降至 50 kPa,再恒温可
逆压缩至 100 kPa。求整个过程的Q,W,△U,△H,△S。
解:过程为
4mol 单原子气体4mol 单原子气体4mol 单原子气体恒容冷却 T1?750K?????T0???可逆压缩????T2?T0V1,p1?150kPaV1,p0?50kPaV2,100kPaT0?T1p0/p1?{50?750/150}K?250K W1?0,
W?W2?nRT0ln(p2/p0)?{4?8.3145?250ln(100/50)}J?5763J?5.763kJ
3?U2?0,?U??U1?{4?R?(250?750)}J??24944J??24.944kJ
2 ?H2?0,?H??H1?{4?5R?(250?750)}J??41570J??41.57kJ
2Q = △U – W = (-24.944 – 5.763)kJ = - 30.707 kJ ≈ 30.71 kJ
?S??SV??ST?nCV,mlnT0p?nRln2 T1p0-1
-1
= {4?3Rln250?4?Rln100} J·K= - 77.86 J·K
2750503-14 3 mol 双原子理想气体从始态100 kPa ,75 dm,先恒温可逆压缩使体积缩小至 50 dm,再
3
恒压加热至100 dm。求整个过程的Q,W,△U,△H,△S。
解:过程为
3mol 双原子气体3mol 双原子气体3mol 双原子气体恒温可逆压缩恒压加热 V1?75dm3??????V0?50dm3?????V2?100dm3T1,p1?100kPaT1,p0??T2,p0?p2T1?p1V1/(nR)?{100?103?75?10?3/(3?8.3145)}K?300.68K
p0?nRT1/V0?{3?8.3145?300.68/(50?10?3)}K?150000Pa?150kPa
3
3
T2?p2V2/(nR)?{150?103?100?10?3/(3?8.3145)}K?601.36K W?W1?W2??nRT1ln(V0/V1)?p0(V2?V0)
?{?3?8.3145?300.68ln(50/75)?150?103?(100?50)?10?3}J
= - 4459 J = - 4.46 kJ
35
5?U1?0,?U??U2?{3?R?(601.36?300.68)}J?18750J?18.75kJ
2 ?H1?0,?H??H2?{3?7R?(601.36?300.68)}J?26250J?26.25kJ
2Q = △U – W = (18.75 + 4.46 )kJ = 23.21 kJ
?S??ST,r??Sp??nRlnp0T?nCp,mln2 p1T0-1 -1
= {?3?R?ln150?3?7Rln601.36} J·K= 50.40 J·K
1002300.683-15 5 mol 单原子理想气体从始态 300 K,50kPa,先绝热可逆压缩至 100 kPa,再恒压冷却使3
体积缩小至 85 dm,求整个过程的Q,W,△U,△H,△S。
解:过程示意如下: 5mol 单原子气体5mol 单原子气体5mol 单原子气体绝热可逆压缩恒压冷却热 , T0,V1??,T1?300K,??????V0???????V2?85dm3,T2,p2p1?50kPa p0?100kPa
T0?(p0/p1)R/Cp,mT1?{(100/50)2/5?300}K?395.85K
V0?nRT0/p0?{5?8.3145?395.85/(100?103)}m3?0.16456m3
3Q1?0,W1??U1?{5?R?(395.85?300)}J?5977J?5.977kJ
2T2?p2V2100000?0.085?{}K?204.47K nR5?8.3143
-3
W2 = - pamb ( V2 – V1 ) = {- 100×10×(85 – 164.56)×10} J = 7956 J W = W1 + W2 = 13933 J = 13.933 kJ 3?U2?{5?R?(204.47?395.85)}J??11934J
2△U = △U1 + △U2 = -5957 J = - 5.957 kJ 5?H?{5?R?(204.47?300)}J??9929J??9.930kJ
2Q?Q2??U?W2?(?11.934?7.956)kJ??19.89kJ
5204.47?S??S绝热,r??SP?0?nCp,mln(T2/T0) ?{5?R?ln}J?K?1??68.66J?K?1
2395.85 3-16 始态 300 K,1Mpa 的单原子理想气体 2 mol,反抗 0.2 Mpa的恒定外压绝热不可逆膨
胀平衡态。求整个过程的W,△U,△H,△S。
解:Q = 0,W = △U
3?pamb(V2?V1)?n?R(T2?T1)2
?nET2nRT1?3??pamb???n?R(T2?T1)?p?p21??amb代入数据整理得 5T2 = 3.4 T1 = 3.4×300K;故 T2 = 204 K 3W??U2?{2?R?(204?300)}J??2395J??2.395kJ25?H?{2?R?(204?300)}J??3991J??3.991kJ
236
相关推荐: