第一范文网 - 专业文章范例文档资料分享平台

FDTD(时域有限差分法)算法的Matlab源程序

来源:用户分享 时间:2025/7/31 4:51:58 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

%*********************************************************************** % 3-D FDTD code with PEC boundaries

%*********************************************************************** %

% Program author: Susan C. Hagness

% Department of Electrical and Computer Engineering % University of Wisconsin-Madison % 1415 Engineering Drive % Madison, WI 53706-1691 % 608-265-5739

% hagness@engr.wisc.edu %

% Date of this version: February 2000 %

% This MATLAB M-file implements the finite-difference time-domain % solution of Maxwell's curl equations over a three-dimensional % Cartesian space lattice comprised of uniform cubic grid cells. %

% To illustrate the algorithm, an air-filled rectangular cavity % resonator is modeled. The length, width, and height of the % cavity are 10.0 cm (x-direction), 4.8 cm (y-direction), and % 2.0 cm (z-direction), respectively. %

% The computational domain is truncated using PEC boundary % conditions:

% ex(i,j,k)=0 on the j=1, j=jb, k=1, and k=kb planes % ey(i,j,k)=0 on the i=1, i=ib, k=1, and k=kb planes % ez(i,j,k)=0 on the i=1, i=ib, j=1, and j=jb planes

% These PEC boundaries form the outer lossless walls of the cavity. %

% The cavity is excited by an additive current source oriented % along the z-direction. The source waveform is a differentiated % Gaussian pulse given by

% J(t)=-J0*(t-t0)*exp(-(t-t0)^2/tau^2),

% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc- % content pulse is approximately 7 GHz. The grid resolution % (dx = 2 mm) was chosen to provide at least 10 samples per % wavelength up through 15 GHz. %

% To execute this M-file, type \% This M-file displays the FDTD-computed Ez fields at every other % time step, and records those frames in a movie matrix, M, which % is played at the end of the simulation using the \%

%***********************************************************************

clear

%*********************************************************************** % Fundamental constants

%***********************************************************************

cc=2.99792458e8; %speed of light in free space muz=4.0*pi*1.0e-7; %permeability of free space epsz=1.0/(cc*cc*muz); %permittivity of free space

%*********************************************************************** % Grid parameters

%***********************************************************************

ie=50; %number of grid cells in x-direction je=24; %number of grid cells in y-direction ke=10; %number of grid cells in z-direction

ib=ie+1; jb=je+1; kb=ke+1;

is=26; %location of z-directed current source js=13; %location of z-directed current source

kobs=5;

dx=0.002; %space increment of cubic lattice dt=dx/(2.0*cc); %time step

nmax=500; %total number of time steps

%*********************************************************************** % Differentiated Gaussian pulse excitation

%***********************************************************************

rtau=50.0e-12; tau=rtau/dt; ndelay=3*tau;

srcconst=-dt*3.0e+11;

%*********************************************************************** % Material parameters

%***********************************************************************

eps=1.0; sig=0.0;

%*********************************************************************** % Updating coefficients

%***********************************************************************

ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps)); cb=(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps)); da=1.0;

db=dt/muz/dx;

%*********************************************************************** % Field arrays

%***********************************************************************

ex=zeros(ie,jb,kb); ey=zeros(ib,je,kb); ez=zeros(ib,jb,ke); hx=zeros(ib,je,ke); hy=zeros(ie,jb,ke); hz=zeros(ie,je,kb);

%*********************************************************************** % Movie initialization

%***********************************************************************

tview(:,:)=ez(:,:,kobs); sview(:,:)=ez(:,js,:);

subplot('position',[0.15 0.45 0.7 0.45]),pcolor(tview'); shading flat; caxis([-1.0 1.0]); colorbar; axis image;

title(['Ez(i,j,k=5), time step = 0']); xlabel('i coordinate'); ylabel('j coordinate');

subplot('position',[0.15 0.10 0.7 0.25]),pcolor(sview');

shading flat; caxis([-1.0 1.0]); colorbar; axis image;

title(['Ez(i,j=13,k), time step = 0']); xlabel('i coordinate'); ylabel('k coordinate');

rect=get(gcf,'Position'); rect(1:2)=[0 0];

M=moviein(nmax/2,gcf,rect);

%*********************************************************************** % BEGIN TIME-STEPPING LOOP

%***********************************************************************

for n=1:nmax

%*********************************************************************** % Update electric fields

%***********************************************************************

ex(1:ie,2:je,2:ke)=ca*ex(1:ie,2:je,2:ke)+...

cb*(hz(1:ie,2:je,2:ke)-hz(1:ie,1:je-1,2:ke)+... hy(1:ie,2:je,1:ke-1)-hy(1:ie,2:je,2:ke));

ey(2:ie,1:je,2:ke)=ca*ey(2:ie,1:je,2:ke)+...

cb*(hx(2:ie,1:je,2:ke)-hx(2:ie,1:je,1:ke-1)+... hz(1:ie-1,1:je,2:ke)-hz(2:ie,1:je,2:ke));

ez(2:ie,2:je,1:ke)=ca*ez(2:ie,2:je,1:ke)+...

cb*(hx(2:ie,1:je-1,1:ke)-hx(2:ie,2:je,1:ke)+... hy(2:ie,2:je,1:ke)-hy(1:ie-1,2:je,1:ke));

ez(is,js,1:ke)=ez(is,js,1:ke)+...

srcconst*(n-ndelay)*exp(-((n-ndelay)^2/tau^2));

%*********************************************************************** % Update magnetic fields

%***********************************************************************

hx(2:ie,1:je,1:ke)=hx(2:ie,1:je,1:ke)+...

db*(ey(2:ie,1:je,2:kb)-ey(2:ie,1:je,1:ke)+...

ez(2:ie,1:je,1:ke)-ez(2:ie,2:jb,1:ke));

hy(1:ie,2:je,1:ke)=hy(1:ie,2:je,1:ke)+...

db*(ex(1:ie,2:je,1:ke)-ex(1:ie,2:je,2:kb)+... ez(2:ib,2:je,1:ke)-ez(1:ie,2:je,1:ke));

hz(1:ie,1:je,2:ke)=hz(1:ie,1:je,2:ke)+...

db*(ex(1:ie,2:jb,2:ke)-ex(1:ie,1:je,2:ke)+... ey(1:ie,1:je,2:ke)-ey(2:ib,1:je,2:ke));

%*********************************************************************** % Visualize fields

%***********************************************************************

if mod(n,2)==0;

timestep=int2str(n); tview(:,:)=ez(:,:,kobs); sview(:,:)=ez(:,js,:);

subplot('position',[0.15 0.45 0.7 0.45]),pcolor(tview'); shading flat; caxis([-1.0 1.0]); colorbar; axis image;

title(['Ez(i,j,k=5), time step = ',timestep]); xlabel('i coordinate'); ylabel('j coordinate');

subplot('position',[0.15 0.10 0.7 0.25]),pcolor(sview'); shading flat; caxis([-1.0 1.0]); colorbar; axis image;

title(['Ez(i,j=13,k), time step = ',timestep]); xlabel('i coordinate'); ylabel('k coordinate');

nn=n/2;

M(:,nn)=getframe(gcf,rect);

end;

%***********************************************************************

% END TIME-STEPPING LOOP

%*********************************************************************** end

movie(gcf,M,0,10,rect);

FDTD(时域有限差分法)算法的Matlab源程序.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5189y5axcz0fluh9boav3qhtz4wh9l00tzd_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top