第一范文网 - 专业文章范例文档资料分享平台

二次函数的应用与几何图形的建构

来源:用户分享 时间:2025/11/21 3:05:10 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

学习好资料 欢迎下载

23.(1) B(3,0),y?x2?2x?3

3 (2)P(,0)

739 (3)当E在第四象限,s??x2?x?6(0?x?3)

2211 当E在第三象限,s??x2?x?6(?1?x?0)

22 当E在第一象限或第二象限,s?2x2?4x(x??1或x?3)

六、综合运用(本题满分12分)

26.已知抛物线C1:y??x?2mx?n(m,n为常数,且m≠0,n?0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.

2?b4ac?b2?注:抛物线y?ax?bx?c?a≠0?的顶点坐标为??,?.

4a??2a2(1)请在横线上直接写出抛物线C2的解析式:________________________; (2)当m?1时,判定△ABC的形状,并说明理由;

(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

y

学习好资料 欢迎下载

2O x

26.(1)y??x?2mx?n. ······················································· 2分 (2)当m?1时,△ABC为等腰直角三角形. ································· 3分 理由如下: 如图:

点A与点B关于y轴对称,点C又在y轴上,

··········································································· 4分 ?AC?BC. ·

过点A作抛物线C1的对称轴交x轴于D,过点C作CE?AD于E.

?当m?1时,顶点A的坐标为A?11,?n?,?CE?1.

点C的坐标为?0,n?,

?AE?1?n?n?1.?AE?CE.

从而∠ECA?45,?∠ACy?45.

由对称性知∠BCy?∠ACy?45,?∠ACB?90.

······················································ 7分 ?△ABC为等腰直角三角形. ·

(3)假设抛物线C1上存在点P,使得四边形ABCP为菱形,则PC?AB?BC. 由(2)知,AC?BC,?AB?BC?AC.

从而△ABC为等边三角形. ························································· 8分

?∠ACy?∠BCy?30.

四边形ABCP为菱形,且点P在C1上,?点P与点C关于AD对称.

?PC与AD的交点也为点E,因此∠ACE?90?30?60.

点A,C的坐标分别为Am,m?n,C?0,n?,

2???AE?m2?n?n?m2,CE?m. AEm2在Rt△ACE中,tan60???3.

CEm学习好资料 欢迎下载

?m?3,?m??3.

故抛物线C1上存在点P,使得四边形ABCP为菱形,此时m??3.

····························································································· 12分 说明:只求出m的一个值扣2分.

y

搜索更多关于: 二次函数的应用与几何图形的建构 的文档
二次函数的应用与几何图形的建构.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c51vod205of7s7tu43p391qw0b8cv4600t7f_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top