3.(2018江苏)设{an}是首项为a1,公差为d的等差数列,{bn}是首项为b1,公比为q的等比数列.
(1)设a1?0,b1?1,q?2,若|an?bn|?b1对n?1,2,3,4均成立,求d的取值范围;
(2)若a1?b1?0,m?N*,q?(1,m2],证明:存在d?R,使得|an?bn|?b1对n?2,3,L,m?1均成立,并求d的取值范围(用b1,m,q表示).
?75?【答案】(1)d的取值范围为?,?;
?32??b1?qm?2?bqm?(2)d的取值范围为?,1?,证明见解析.
mm????【解析】(1)由条件知:an??n?1?d,bn?2n?1. 因为an?bn?b1对n?1,2,3,4均成立, 即?n?1?d?2n?1?1对n?1,2,3,4均成立, 即1?1,1?d?3,3?2d?5,7?3d?9,得
?75?因此,d的取值范围为?,?.
?32?75?d?. 32(2)由条件知:an?b1??n?1?d,bn?b1qn?1.
若存在d,使得an?bn?b1(n?2,3,L,m?1)成立, 即b1??n?1?d?b1qn?1?b1(n?2,3,L,m?1),
qn?1?2qn?1b1?d?b1. 即当n?2,3,L,m?1时,d满足
n?1n?11?qn?1?qm?2, 因为q?1,m2?,则?qn?1qn?1?2b1?0,b1?0,对n?2,3,L,m?1均成立. 从而
n?1n?1?因此,取d?0时,an?bn?b1对n?2,3,L,m?1均成立.
?qn?1?2??qn?1?下面讨论数列??的最大值和数列??的最小值
n?1n?1????(n?2,3,L,m?1).
nn?1nqn?2qn?1?2nqn?qn?nqn?1?2n?q?q??q?2①当2?n?m时,, ???nn?1n?n?1?n?n?1?当1?q?2时,有qn?qm?2,从而n?qn?qn?1??qn?2?0.
1m?qn?1?2?因此,当2?n?m?1时,数列??单调递增,
n?1???qn?1?2?qm?2故数列?. ?的最大值为
m?n?1?②设f?x??2x?1?x?,当x?0时,f??x???ln2?1?xln2?2x?0, 所以f?x?单调递减,从而f?x??f?0??1.
qn1q?n?1??1??1?n?2n?1???f???1, 当2?n?m时,n?1?qn?n??n?n?1?qn?1?因此,当2?n?m?1时,数列??单调递减,
?n?1??qn?1?qm故数列?. ?的最小值为
m?n?1??b1?qm?2?bqm?因此,d的取值范围为?,1?.
mm????
4.(2018浙江)已知等比数列{}的公比q>1,且a345=28,a4+2是a3,a5的等差中项.数
列{}满足b1=1,数列{(1?)}的前n项和为2n2. (Ⅰ)求q的值;
(Ⅱ)求数列{}的通项公式. 答案:(1)q?2;(2)bn?15?4n?3. n?22解答:(1)由题可得a3?a4?a5?28,2(a4?2)?a3?a5,联立两式可得a4?8.
11所以a3?a4?a5?8(?1?q)?28,可得q?2(另一根?1,舍去).
q2(2)由题可得n?2时,(bn?1?bn)an?2n2?n?[2(n?1)2?(n?1)]?4n?1,
当n?1时,(b2?b1)a1?2?1?3也满足上式,所以(bn?1?bn)an?4n?1,n?N?, 而由(1)可得an?8?2n?4?2n?1,所以bn?1?bn?4n?14n?1?n?1, an2所以bn?b1?(b2?b1)?(b3?b2)?L?(bn?bn?1)?37114n?5???L?, 012n?22222错位相减得bn?b1?14?4n?3, 2n?2所以bn?15?
4n?3. n?225.(2018天津文)设{}是等差数列,其前n项和为(n∈N*);{}是等比数列,公比大于0,其前n项和为(n∈N*).已知b1=1,b32+2,b435,b54+2a6. (Ⅰ)求和;
(Ⅱ)若(T12+…)4,求正整数n的值.
【答案】(1)Sn?n?n?1?2,Tn?2n?1;(2)4.
【解析】(1)设等比数列?bn?的公比为q,由b1?1,b3?b2?2,可得q2?q?2?0. 因为q?0,可得q?2,故bn?2n?11?2n.所以,Tn??2n?1.
1?2设等差数列?an?的公差为d.由b4?a3?a5,可得a1?3d?4.由b5?a4?2a6, 可得3a1?13d?16,从而a1?1,d?1,故an?n,所以,Sn?(2)由(1),有T1?T2?L?Tn??21?23?L?2n??n=Sn??T1?T2?L?Tn??an?4bn可得
2?1?2n1?2n?n?1?2.
n?1???n?2?n?2,由
n?n?1?2?2n?1?n?2?n?2n?1,
整理得n2?3n?4?0,解得n??1(舍),或n?4.所以n的值为4.
6.(2018天津理)设{an}是等比数列,公比大于0,其前n项和为Sn(n?N?),{bn}是等差数列. 已知a1?1,a3?a2?2,a4?b3?b5,a5?b4?2b6. (I)求{an}和{bn}的通项公式;
()设数列{Sn}的前n项和为Tn(n?N?), (i)求Tn;
(Tk?bk?2)bk2n?2??2(n?N?). ()证明?n?2k?1(k?1)(k?2)n【答案】(1)an?2n?1,bn?n;(2)①Tn?2n?1?n?2;②证明见解析. 【解析】(1)设等比数列?an?的公比为q.由a1?1,a3?a2?2, 可得q2?q?2?0因为q?0,可得q?2,故an?2n?1, 设等差数列?bn?的公差为d,由a4?b3?b5,可得b1?3d?4, 由a5?b4?2b6,可得3b1?13d?16,从而b1?1,d?1,故bn?n, 所以数列?an?的通项公式为an?2n?1,数列?bn?的通项公式为bn?n.
1?2n(2)①由(1),有Sn??2n?1,
1?2故Tn???2k?1???2k?n?k?1k?1k?1nn2?1?2n1?2???n?2n?1?n?2,
Tk?bk?2?bk?2?k?2?k?2?k?k?2k?12k?22k?1②因为, ?????k?1??k?2??k?1??k?2??k?1??k?2?k?2k?1?Tk?bk?2?bk?2322??2423??????????L所以?k?1k?2????32??43?k?1?n?2n?22n?1?2n?2????2. ??n?2n?1n?2??
7.(2018全国新课标Ⅰ文)已知数列?an?满足a1?1,nan?1?2?n?1?an,设bn?b2,b3; (1)求b1,an. n(2)判断数列?bn?是否为等比数列,并说明理由; (3)求?an?的通项公式. 答案:
(1)b1?1,b2?2,b3?4 (2)见解答 (3)an?n?2n?1
相关推荐: