第一范文网 - 专业文章范例文档资料分享平台

人教中考数学压轴题专题复习—反比例函数的综合含答案

来源:用户分享 时间:2025/6/24 6:03:13 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣

x+10,交于C,D两点,并且OC=3BD. (1)求出双曲线的解析式;

(2)连结CD,求四边形OCDB的面积.

【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,

∴∠AMO=∠CEO=∠DFB=90°, ∴∠AOB=∠ABO=45°, ∴△CEO∽△DEB ∴

=

=3,

∵直线OA:y=x和直线AB:y=﹣x+10,

设D(10﹣m,m),其中m>0, ∴C(3m,3m), ∵点C、D在双曲线上, ∴9m2=m(10﹣m), 解得:m=1或m=0(舍去) ∴C(3,3), ∴k=9, ∴双曲线y= BF=1,

(x>0)

(2)解:由(1)可知D(9,1),C(3,3),B(10,0), ∴OE=3,EF=6,DF=1,

∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB

×1×1=17,

= ×3×3+ ×(1+3)×6+

∴四边形OCDB的面积是17

【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.

2.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .

(1)求这两个函数的解析式;

(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

【答案】(1)解:设A点坐标为(x,y),且x<0,y>0, 则S△ABO= ?|BO|?|BA|= ?(﹣x)?y= , ∴xy=﹣3, 又∵y= , 即xy=k, ∴k=﹣3.

∴所求的两个函数的解析式分别为y=﹣ ,y=﹣x+2; (2)解:由y=﹣x+2, 令x=0,得y=2.

∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),

A、C两点坐标满足

∴交点A为(﹣1,3),C为(3,﹣1),

∴S△AOC=S△ODA+S△ODC= OD?(|x1|+|x2|)= ×2×(3+1)=4.

【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式可求出.

=2S△ABO,

可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即

3.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,

).

(1)求反比例函数的表达式和m的值;

(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式. 【答案】(1)解:∵反比例函数y= ∴k=3×

=2,

的图象上,

(k≠0)在第一象限内的图象经过点E(3,

),

∴反比例函数的表达式为y=

又∵点D(m,2)在反比例函数y= ∴2m=2,解得:m=1

(2)解:设OG=x,则CG=OC﹣OG=2﹣x, ∵点D(1,2), ∴CD=1.

人教中考数学压轴题专题复习—反比例函数的综合含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c56obd7vyty0fvqu4yw276b8ve00zl600v0w_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top