第一范文网 - 专业文章范例文档资料分享平台

人教版七年级数学下册第十章《数据的收集、整理与描述单元复习与巩固》讲义(无答案)-word

来源:用户分享 时间:2025/7/6 7:14:33 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

数据的收集、整理与描述单元复习与巩固

【学习目标】

1.了解总体、样本、个体等基本概念,; 2.知道调查的几种方式及其特点; 3.理解频数、频率以及扇形统计图的特点; 4.理解数据收集的一般步骤;

5.会画频数分布表和频数分布直方图,理解其意义和作用. 【知识网络】 【要点梳理】

要点一:总体、样本的概念

1.总体:要考察的全体对象称为总体.

2.个体:组成总体的每一个考察对象称为个体. 3.样本:被抽取的那些个体组成一个样本.

4.样本容量:样本中个体的数目叫样本容量(不带单位).

注意:为了使样本能较好地反映总体的情况,除了要有合适的样本容量外,抽取时还要尽量使每一个个体都有同等的机会被抽到. 要点二:全面调查与抽样调查

调查的方式有两种:全面调查和抽样调查:

1.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等. 全面调查的步骤: (1)收集数据;

(2)整理数据(划记法);

(3)描述数据(条形图或扇形图等).

2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况. 抽样调查的意义:

(1)减少统计的工作量;

(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本

来估计总体的一种调查.

3.判断全面调查和抽样调查的方法在于:

①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况. ②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.

调查方法:问卷,观察,走访,试验,查阅资料。

要点三:扇形统计图和条形统计图及其特点

1.生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图. (1)扇形统计图的特点:

①用扇形面积表示部分占总体的百分比;

第 1 页

②易于显示每组数据相对于总体的百分比;

③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可. (2)扇形统计图的画法:

把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的

,即10%. 同理,圆心角是72°的扇形占整个圆面积的

,即20%. 因此画扇形统计图的关

键是算出圆心角的大小.

扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°. (3)扇形统计图的优缺点:

扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,

无法知道每组数据的具体数量.

2.用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图. (1)条形统计图的特点:

①能够显示每组中的具体数据; ②易于比较数据之间的差别. (2)条形统计图的优缺点:

条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比. 注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种. 要点四:频数、频率和频数分布表

1.一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量. 公式:

.

由以上公式还可得出两个变形公式: (1)频数=频率×数据总数. (2)

.

注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.

2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.

要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.

要点五:频数分布直方图与频数折线图

1.在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图. 2.条形图和直方图的异同:

直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况.

直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数),长方形的宽

第 2 页

表示各组的组距,各长方形的高和宽都有意义. 此外由于分组数据都有连续性,直方图的各长方形通常是连续排列,中间没有空隙,而条形图是分开排列,长方形之间有空隙.

3.频数折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数折线图. 4.频数分布直方图的画法:

(1)找到这一组数据的最大值和最小值; (2)求出最大值与最小值的差; (3)确定组距,分组; (4)列出频数分布表;

(5)由频数分布表画出频数分布直方图. 5.画频数分布直方图的注意事项:

(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据

单位多一位. 例如:题中数据要求到整数位,分组时要求数据到0.5即可.

(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多,当数据在100以内

【典型例题】 类型一:考查基本概念

1:为了了解2009年河南省中考数学考试情况,从所有考生中抽取600名考生的成绩进行考查,

指出该考查中的总体和样本分别是什么?

举一反三:

【变式】2019年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是( ).

A.4591名学生的外语成绩是总体; B.此题是抽样调查;

C.样本是80名学生的外语成绩; D.样本是被调查的80名学生. 类型二: 调查方法的考查

2:下列调查中,适合用普查(全面调查)方法的是( ). A.电视机厂要了解一批显像管的使用寿命; B.要了解我市居民的环保意识;

C.要了解我市“阳山水蜜桃”的甜度和含水量; D.要了解某校数学教师的年龄状况.

举一反三:

【变式】下列抽样调查中抽取的样本合适吗?为什么?

(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;

(2)在上海市调查我国公民的受教育程度; (3)在中学生中调查青少年对网络的态度;

(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重; (5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.

第 3 页

人教版七年级数学下册第十章《数据的收集、整理与描述单元复习与巩固》讲义(无答案)-word.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5bo4a5md9i9kcek7hm3l8mqar1ru5x013eb_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top